Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 3, Pages 499–520 (Mi zvmmf9673)  

This article is cited in 17 scientific papers (total in 17 papers)

Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data

V. A. Garanzha, L. N. Kudryavtseva

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia
References:
Abstract: A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a “soup” of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Key words: tetrahedral meshes, Delaunay triangulation, surface reconstruction, radial basis functions, variational method.
Received: 16.06.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 3, Pages 427–447
DOI: https://doi.org/10.1134/S0965542512030074
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: V. A. Garanzha, L. N. Kudryavtseva, “Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 499–520; Comput. Math. Math. Phys., 52:3 (2012), 427–447
Citation in format AMSBIB
\Bibitem{GarKud12}
\by V.~A.~Garanzha, L.~N.~Kudryavtseva
\paper Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 3
\pages 499--520
\mathnet{http://mi.mathnet.ru/zvmmf9673}
\zmath{https://zbmath.org/?q=an:06057604}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..427G}
\elib{https://elibrary.ru/item.asp?id=17647715}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 3
\pages 427--447
\crossref{https://doi.org/10.1134/S0965542512030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303535800008}
\elib{https://elibrary.ru/item.asp?id=17981879}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859338015}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9673
  • https://www.mathnet.ru/eng/zvmmf/v52/i3/p499
  • This publication is cited in the following 17 articles:
    1. Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev, “Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots”, J Glob Optim, 2024  crossref
    2. Zhang J., Zhong D., Wang L., “A Two-Step Surface Reconstruction Method Using Signed Marching Cubes”, Appl. Sci.-Basel, 12:4 (2022), 1792  crossref  isi  scopus
    3. Lera D. Posypkin M. Sergeyev Ya.D., “Space-Filling Curves For Numerical Approximation and Visualization of Solutions to Systems of Nonlinear Inequalities With Applications in Robotics”, Appl. Math. Comput., 390 (2021), 125660  crossref  isi
    4. Dmitry Malyshev, Larisa Rybak, Santhakumar Mohan, Askhat Diveev, Vladislav Cherkasov, Anton Pisarenko, Communications in Computer and Information Science, 1514, Advances in Optimization and Applications, 2021, 230  crossref
    5. V. A. Garanzha, L. N. Kudryavtseva, V. O. Tsvetkova, “Hybrid Voronoi mesh generation: algorithms and unsolved problems”, Comput. Math. Math. Phys., 59:12 (2019), 1945–1964  mathnet  crossref  crossref  isi  elib
    6. E V Gaponenko, D I Malyshev, L Behera, “Approximation of the parallel robot working area using the method of nonuniform covering”, J. Phys.: Conf. Ser., 1333:5 (2019), 052005  crossref
    7. Vladimir Garanzha, Liudmila Kudryavtseva, Valeriia Tsvetkova, Lecture Notes in Computational Science and Engineering, 131, Numerical Geometry, Grid Generation and Scientific Computing, 2019, 25  crossref
    8. L. A. Rybak, E. V. Gaponenko, D. I. Malyshev, Mechanisms and Machine Science, 73, Advances in Mechanism and Machine Science, 2019, 741  crossref
    9. A. I. Belokrys-Fedotov, V. A. Garanzha, L. N. Kudryavtseva, “Delaunay meshing of implicit domains with boundary edge sharpening and sliver elimination”, Math. Comput. Simul., 147:SI (2018), 2–26  crossref  mathscinet  isi  scopus
    10. Yu. Evtushenko, M. Posypkin, L. Rybak, A. Turkin, “Approximating a solution set of nonlinear inequalities”, J. Glob. Optim., 71:1, SI (2018), 129–145  crossref  mathscinet  zmath  isi  scopus
    11. M. V. Yakobovskii, S. K. Grigorev, “Algoritm garantirovannoi generatsii tetraedralnoi setki proektsionnym metodom”, Preprinty IPM im. M. V. Keldysha, 2018, 109, 18 pp.  mathnet  crossref  elib
    12. Yu. G. Evtushenko, M. A. Posypkin, L. A. Rybak, A. V. Turkin, “Finding sets of solutions to systems of nonlinear inequalities”, Comput. Math. Math. Phys., 57:8 (2017), 1241–1247  mathnet  crossref  crossref  isi  elib
    13. Vladimir D. Liseikin, Scientific Computation, Grid Generation Methods, 2017, 255  crossref
    14. A. I. Belokrys-Fedotov, V. A. Garanzha, L. N. Kudryavtseva, “Generation of Delaunay meshes in implicit domains with edge sharpening”, Comput. Math. Math. Phys., 56:11 (2016), 1901–1918  mathnet  crossref  crossref  isi  elib
    15. A. V. Kofanov, V. D. Liseikin, “Grid construction for discretely defined configurations”, Comput. Math. Math. Phys., 53:6 (2013), 759–765  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. A. S. Bolkhovitinov, “Dostizhenie sopostavimosti morfometricheskikh i modelnykh gistogeneticheskikh-morfogeneticheskikh dannykh s pomoschyu testovykh funktsii globalnoi optimizatsii”, Morfologiya, 7:2 (2013), 5–19  elib
    17. S. K. Godunov, “About inclusion of Maxwell’s equations in systems relativistic of the invariant equations”, Comput. Math. Math. Phys., 53:8 (2013), 1179–1182  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:769
    Full-text PDF :464
    References:68
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025