Abstract:
A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a “soup” of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Citation:
V. A. Garanzha, L. N. Kudryavtseva, “Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 499–520; Comput. Math. Math. Phys., 52:3 (2012), 427–447
This publication is cited in the following 17 articles:
Daniela Lera, Maria Chiara Nasso, Mikhail Posypkin, Yaroslav D. Sergeyev, “Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots”, J Glob Optim, 2024
Zhang J., Zhong D., Wang L., “A Two-Step Surface Reconstruction Method Using Signed Marching Cubes”, Appl. Sci.-Basel, 12:4 (2022), 1792
Lera D. Posypkin M. Sergeyev Ya.D., “Space-Filling Curves For Numerical Approximation and Visualization of Solutions to Systems of Nonlinear Inequalities With Applications in Robotics”, Appl. Math. Comput., 390 (2021), 125660
Dmitry Malyshev, Larisa Rybak, Santhakumar Mohan, Askhat Diveev, Vladislav Cherkasov, Anton Pisarenko, Communications in Computer and Information Science, 1514, Advances in Optimization and Applications, 2021, 230
V. A. Garanzha, L. N. Kudryavtseva, V. O. Tsvetkova, “Hybrid Voronoi mesh generation: algorithms and unsolved problems”, Comput. Math. Math. Phys., 59:12 (2019), 1945–1964
E V Gaponenko, D I Malyshev, L Behera, “Approximation of the parallel robot working area using the method of nonuniform covering”, J. Phys.: Conf. Ser., 1333:5 (2019), 052005
Vladimir Garanzha, Liudmila Kudryavtseva, Valeriia Tsvetkova, Lecture Notes in Computational Science and Engineering, 131, Numerical Geometry, Grid Generation and Scientific Computing, 2019, 25
L. A. Rybak, E. V. Gaponenko, D. I. Malyshev, Mechanisms and Machine Science, 73, Advances in Mechanism and Machine Science, 2019, 741
A. I. Belokrys-Fedotov, V. A. Garanzha, L. N. Kudryavtseva, “Delaunay meshing of implicit domains with boundary edge sharpening and sliver elimination”, Math. Comput. Simul., 147:SI (2018), 2–26
Yu. Evtushenko, M. Posypkin, L. Rybak, A. Turkin, “Approximating a solution set of nonlinear inequalities”, J. Glob. Optim., 71:1, SI (2018), 129–145
M. V. Yakobovskii, S. K. Grigorev, “Algoritm garantirovannoi generatsii tetraedralnoi setki proektsionnym metodom”, Preprinty IPM im. M. V. Keldysha, 2018, 109, 18 pp.
Yu. G. Evtushenko, M. A. Posypkin, L. A. Rybak, A. V. Turkin, “Finding sets of solutions to systems of nonlinear inequalities”, Comput. Math. Math. Phys., 57:8 (2017), 1241–1247
Vladimir D. Liseikin, Scientific Computation, Grid Generation Methods, 2017, 255
A. I. Belokrys-Fedotov, V. A. Garanzha, L. N. Kudryavtseva, “Generation of Delaunay meshes in implicit domains with edge sharpening”, Comput. Math. Math. Phys., 56:11 (2016), 1901–1918
A. V. Kofanov, V. D. Liseikin, “Grid construction for discretely defined configurations”, Comput. Math. Math. Phys., 53:6 (2013), 759–765
A. S. Bolkhovitinov, “Dostizhenie sopostavimosti morfometricheskikh i modelnykh gistogeneticheskikh-morfogeneticheskikh dannykh s pomoschyu testovykh funktsii globalnoi optimizatsii”, Morfologiya, 7:2 (2013), 5–19
S. K. Godunov, “About inclusion of Maxwell’s equations in systems relativistic of the invariant equations”, Comput. Math. Math. Phys., 53:8 (2013), 1179–1182