Abstract:
The grid-characteristic method on a sequence of embedded hierarchical grids is used to study the reflection and diffraction of elastic seismic waves propagating from an earthquake hypocenter to the Earth’s surface. More specifically, the destruction caused by seismic waves in complex heterogeneous structures, such as multi-story buildings, is analyzed. This study is based on computer modeling with the use of the grid-characteristic method, which provides a detailed description of wave processes in heterogeneous media, takes into account all types of emerging waves, and relies on algorithms that perform well on the boundaries of the integration domain and material interfaces. Applying a sequence of hierarchical grids makes it possible to simulate seismic wave propagation from an earthquake hypocenter to ground facilities of interest—multi-story buildings—and to investigate their seismic resistance.
Key words:
system of wave equations, seismic waves, grid-characteristic method, numerical modeling, seismic resistance, hierarchical grids, heterogeneous media.
Citation:
I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1804–1811; Comput. Math. Math. Phys., 57:11 (2017), 1771–1777
\Bibitem{PetFavKho17}
\by I.~B.~Petrov, A.~V.~Favorskaya, N.~I.~Khokhlov
\paper Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 11
\pages 1804--1811
\mathnet{http://mi.mathnet.ru/zvmmf10636}
\crossref{https://doi.org/10.7868/S0044466917110126}
\elib{https://elibrary.ru/item.asp?id=30480182}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 11
\pages 1771--1777
\crossref{https://doi.org/10.1134/S0965542517110112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416327600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037037712}
Linking options:
https://www.mathnet.ru/eng/zvmmf10636
https://www.mathnet.ru/eng/zvmmf/v57/i11/p1804
This publication is cited in the following 27 articles:
Xinyu Chu, Zejun Wang, “Multi object evolution based on infrared thermal radiation image sensing for simulating youth football sports”, Thermal Science and Engineering Progress, 2025, 103251
E. N. Aristova, G. O. Astafurov, “Issledovanie proektsionno–kharakteristicheskogo metoda resheniya uravneniya perenosa na benchmarke Kobayashi”, Matem. modelirovanie, 37:2 (2025), 63–74
E. N. Aristova, N. I. Karavaeva, A. A. Gurchenkov, “Osobennosti realizatsii modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya uravneniya perenosa s peremennym koeffitsientom pogloscheniya”, Preprinty IPM im. M. V. Keldysha, 2024, 018, 19 pp.
E. N. Aristova, N. I. Karavaeva, I. R. Ivashkin, “Monotonizatsiya modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya neodnorodnogo uravneniya perenosa s pogloscheniem”, Preprinty IPM im. M. V. Keldysha, 2024, 065, 40 pp.
E. N. Aristova, G. O. Astafurov, “A third-order projection-characteristic method for solving the transport equation on unstructed grids”, Math. Models Comput. Simul., 16:2 (2024), 208–216
A. Yu. Mitrofanova, O. S. Temnaya, A. R. Safin, O. V. Kravchenko, S. A. Nikitov, “Modelirovanie usileniya spinovykh voln v ferromagnitnykh plenkakh s pomoschyu primeneniya metoda kharakteristik k nelineinomu uravneniyu perenosa”, Kompyuternye issledovaniya i modelirovanie, 14:4 (2022), 795–803
G. O. Astafurov, “Postroenie i issledovanie metoda CPP (Cubic Polynomial Projection) resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2022, 066, 56 pp.
A. Favorskaya, I. Petrov, “Calculation of the destruction of ice structures by the grid-characteristic method on structured grids”, Knowledge-Based and Intelligent Information & Engineering Systems (KSE 2021), Procedia Computer Science, 192, eds. J. Watrobski, W. Salabun, C. Toro, C. Zanni-Merk, R. Howlett, L. Jain, Elsevier Science Bv, 2021, 3768–3776
A E Chistyakov, A V Strazhko, A M Atayan, S V Protsenko, “Software development for calculating the polluted by suspension and other impurities zones volumes on the basis of graphics accelerator”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012084
Elena N. Aristova, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 51
I. B. Petrov, A. V. Favorskaya, “Computation of seismic resistance of an ice island by the grid-characteristic method on combined grids”, Comput. Math. Math. Phys., 61:8 (2021), 1339–1352
E. N. Aristova, G. O. Astafurov, “Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation”, Comput. Math. Math. Phys., 61:11 (2021), 1711–1722
A M Atayan, “Solving the diffusion-convection problem using MPI parallel computing technology”, J. Phys.: Conf. Ser., 1902:1 (2021), 012098
A. V. Nikitina, A. E. Chistyakov, A. M. Atayan, “NUMERICAL IMPLEMENTATION OF A PARALLEL ALGORITHM FOR SOLVING THE PROBLEM OF POLLUTANT TRANSPORT IN A RESERVOIR ON A HIGH-PERFORMANCE COMPUTER SYSTEM”, vkit, 2021, no. 202, 27
A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, V. V. Sidoryakina, S. V. Protsenko, “Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone”, Math. Models Comput. Simul., 12:5 (2020), 757–769
E. N. Aristova, G. I. Ovcharov, “Hermite characteristic scheme for linear inhomogeneous transport equation”, Math. Models Comput. Simul., 12:6 (2020), 845–855
E. N. Aristova, G. O. Astafurov, “O sravnenii dissipativno-dispersionnykh svoistv nekotorykh konservativnykh raznostnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2020, 117, 22 pp.
E. N. Aristova, N. I. Karavaeva, “Konservativnaya monotonizatsiya varianta CIP skhemy dlya resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 121, 16 pp.
A. A. Kozhemyachenko, I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Boundary conditions for modeling the impact of wheels on railway track”, Comput. Math. Math. Phys., 60:9 (2020), 1539–1554
Alena V. Favorskaya, “Fall of shock wave from a supersonic aircraft into the geological media”, Procedia Computer Science, 176 (2020), 2546