Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 3, Pages 3–18
DOI: https://doi.org/10.20948/mm-2020-03-01
(Mi mm4160)
 

This article is cited in 10 scientific papers (total in 10 papers)

Hermite characteristic scheme for linear inhomogeneous transport equation

E. N. Aristovaa, G. I. Ovcharovb

a Keldysh Institute of Applied Mathematics RAS
b Moscow Institute of Physics and Technology
References:
Abstract: The interpolation-characteristic scheme for the numerical solution of the inhomogeneous transport equation is constructed. The scheme is based on Hermite interpolation to reconstruction the value of unknown function at the point of intersection of the backward characteristic with the cell edges. Hermite interpolation to regeneration the values of the function uses not only the nodal values of the function, but also values of its derivative. Unlike previous works, also based on Hermitian interpolation, the differential continuation of the transport equation is not used to transfer information about the derivatives to the next layer. The relationship between the integral means, nodal values and derivatives according to the Euler–Maclaurin formula is used. The third-order convergence of the difference scheme for smooth solutions is shown. The dissipative and dispersion properties of the scheme are considered on numerical examples of solutions with decreasing smoothness.
Keywords: advection equation, interpolation-characteristic method, Hermite interpolation, Euler–Maclaurin formula.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00857_а
Received: 01.07.2019
Revised: 01.07.2019
Accepted: 09.09.2019
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 6, Pages 845–855
DOI: https://doi.org/10.1134/S2070048220060022
Document Type: Article
Language: Russian
Citation: E. N. Aristova, G. I. Ovcharov, “Hermite characteristic scheme for linear inhomogeneous transport equation”, Mat. Model., 32:3 (2020), 3–18; Math. Models Comput. Simul., 12:6 (2020), 845–855
Citation in format AMSBIB
\Bibitem{AriOvc20}
\by E.~N.~Aristova, G.~I.~Ovcharov
\paper Hermite characteristic scheme for linear inhomogeneous transport equation
\jour Mat. Model.
\yr 2020
\vol 32
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/mm4160}
\crossref{https://doi.org/10.20948/mm-2020-03-01}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 6
\pages 845--855
\crossref{https://doi.org/10.1134/S2070048220060022}
Linking options:
  • https://www.mathnet.ru/eng/mm4160
  • https://www.mathnet.ru/eng/mm/v32/i3/p3
  • This publication is cited in the following 10 articles:
    1. E. N. Aristova, N. I. Karavaeva, A. A. Gurchenkov, “Osobennosti realizatsii modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya uravneniya perenosa s peremennym koeffitsientom pogloscheniya”, Preprinty IPM im. M. V. Keldysha, 2024, 018, 19 pp.  mathnet  crossref
    2. E. N. Aristova, N. I. Karavaeva, I. R. Ivashkin, “Monotonizatsiya modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya neodnorodnogo uravneniya perenosa s pogloscheniem”, Preprinty IPM im. M. V. Keldysha, 2024, 065, 40 pp.  mathnet  crossref
    3. E. N. Aristova, G. O. Astafurov, “A third-order projection-characteristic method for solving the transport equation on unstructed grids”, Math. Models Comput. Simul., 16:2 (2024), 208–216  mathnet  crossref  crossref
    4. G. O. Astafurov, “Postroenie i issledovanie metoda CPP (Cubic Polynomial Projection) resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2022, 066, 56 pp.  mathnet  crossref
    5. Margarita N. Favorskaya, Alena V. Favorskaya, Igor B. Petrov, Lakhmi C. Jain, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 1  crossref
    6. E. N. Aristova, G. O. Astafurov, “Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation”, Comput. Math. Math. Phys., 61:11 (2021), 1711–1722  mathnet  mathnet  crossref  crossref  isi  scopus
    7. Elena N. Aristova, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 51  crossref
    8. B. V. Rogov, “Bikompaktnaya interpolyatsionno-kharakteristicheskaya skhema tretego poryadka approksimatsii dlya lineinogo uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 106, 20 pp.  mathnet  crossref
    9. E. N. Aristova, G. O. Astafurov, “O sravnenii dissipativno-dispersionnykh svoistv nekotorykh konservativnykh raznostnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2020, 117, 22 pp.  mathnet  crossref
    10. E. N. Aristova, N. I. Karavaeva, “Konservativnaya monotonizatsiya varianta CIP skhemy dlya resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 121, 16 pp.  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :99
    References:57
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025