Abstract:
The interpolation-characteristic scheme for the numerical solution of the inhomogeneous
transport equation is constructed. The scheme is based on Hermite interpolation to reconstruction the value of unknown function at the point of intersection of the backward characteristic with the cell edges. Hermite interpolation to regeneration the values of the
function uses not only the nodal values of the function, but also values of its derivative.
Unlike previous works, also based on Hermitian interpolation, the differential continuation of the transport equation is not used to transfer information about the derivatives to
the next layer. The relationship between the integral means, nodal values and derivatives
according to the Euler–Maclaurin formula is used. The third-order convergence of the difference scheme for smooth solutions is shown. The dissipative and dispersion properties
of the scheme are considered on numerical examples of solutions with decreasing
smoothness.
Citation:
E. N. Aristova, G. I. Ovcharov, “Hermite characteristic scheme for linear inhomogeneous transport equation”, Mat. Model., 32:3 (2020), 3–18; Math. Models Comput. Simul., 12:6 (2020), 845–855
This publication is cited in the following 10 articles:
E. N. Aristova, N. I. Karavaeva, A. A. Gurchenkov, “Osobennosti realizatsii modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya uravneniya perenosa s peremennym koeffitsientom pogloscheniya”, Preprinty IPM im. M. V. Keldysha, 2024, 018, 19 pp.
E. N. Aristova, N. I. Karavaeva, I. R. Ivashkin, “Monotonizatsiya modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya neodnorodnogo uravneniya perenosa s pogloscheniem”, Preprinty IPM im. M. V. Keldysha, 2024, 065, 40 pp.
E. N. Aristova, G. O. Astafurov, “A third-order projection-characteristic method for solving the transport equation on unstructed grids”, Math. Models Comput. Simul., 16:2 (2024), 208–216
G. O. Astafurov, “Postroenie i issledovanie metoda CPP (Cubic Polynomial Projection) resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2022, 066, 56 pp.
Margarita N. Favorskaya, Alena V. Favorskaya, Igor B. Petrov, Lakhmi C. Jain, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 1
E. N. Aristova, G. O. Astafurov, “Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation”, Comput. Math. Math. Phys., 61:11 (2021), 1711–1722
Elena N. Aristova, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 51
B. V. Rogov, “Bikompaktnaya interpolyatsionno-kharakteristicheskaya skhema tretego poryadka approksimatsii dlya lineinogo uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 106, 20 pp.
E. N. Aristova, G. O. Astafurov, “O sravnenii dissipativno-dispersionnykh svoistv nekotorykh konservativnykh raznostnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2020, 117, 22 pp.
E. N. Aristova, N. I. Karavaeva, “Konservativnaya monotonizatsiya varianta CIP skhemy dlya resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 121, 16 pp.