Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 9, Pages 1474–1485
DOI: https://doi.org/10.7868/S0044466915090173
(Mi zvmmf10260)
 

This article is cited in 6 scientific papers (total in 6 papers)

Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes

A. Zh. Zhubanysheva, N. Temirgaliev

Gumilev Eurasian National University, ul. Satpayev 2, Astana, 010008, Kazakhstan
Full-text PDF (612 kB) Citations (6)
References:
Abstract: The computational (numerical) diameter is used to completely solve the problem of approximate differentiation of a function given inexact information in the form of an arbitrary finite set of trigonometric Fourier coefficients.
Key words: approximate differentiation, informative cardinality of a given class of functionals, recovery from inexact information, limiting error, computational (numerical) diameter, massive limiting error.
Received: 03.03.2014
Revised: 18.02.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 9, Pages 1432–1443
DOI: https://doi.org/10.1134/S0965542515090146
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: A. Zh. Zhubanysheva, N. Temirgaliev, “Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes”, Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015), 1474–1485; Comput. Math. Math. Phys., 55:9 (2015), 1432–1443
Citation in format AMSBIB
\Bibitem{ZhuTem15}
\by A.~Zh.~Zhubanysheva, N.~Temirgaliev
\paper Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 9
\pages 1474--1485
\mathnet{http://mi.mathnet.ru/zvmmf10260}
\crossref{https://doi.org/10.7868/S0044466915090173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3396522}
\elib{https://elibrary.ru/item.asp?id=24045304}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 9
\pages 1432--1443
\crossref{https://doi.org/10.1134/S0965542515090146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361438500002}
\elib{https://elibrary.ru/item.asp?id=25228816}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941948724}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10260
  • https://www.mathnet.ru/eng/zvmmf/v55/i9/p1474
  • This publication is cited in the following 6 articles:
    1. Galiya Taugynbayeva, Shapen Azhgaliyev, Aksaule Zhubanysheva, Nurlan Temirgaliyev, “Full C(N)D-study of computational capabilities of Lagrange polynomials”, Mathematics and Computers in Simulation, 227 (2025), 189  crossref
    2. A.B. Utesov, G.I. Utesova, R.A. Shanauov, N.Sh. Amanov, “O PREDELNOI POGREShNOSTI OPTIMALNOGO OPERATORA DISKRETIZATsII REShENIYa URAVNENIYa PUASSONA”, BULLETIN Series of Physics & Mathematical Sciences, 87:3 (2024)  crossref
    3. A. B. Utesov, “Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit”, Math. Notes, 111:5 (2022), 759–767  mathnet  crossref  crossref  mathscinet
    4. N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva, “The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory”, Russian Math. (Iz. VUZ), 64:3 (2020), 87–92  mathnet  crossref  crossref  isi
    5. N. Temirgaliev, A. Zh. Zhubanysheva, “Computational (Numerical) diameter in a context of general theory of a recovery”, Russian Math. (Iz. VUZ), 63:1 (2019), 79–86  mathnet  crossref  crossref  isi
    6. N. Temirgaliev, A. Zhubanysheva, “Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications”, Russian Math. (Iz. VUZ), 61:3 (2017), 77–82  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:628
    Full-text PDF :171
    References:94
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025