Abstract:
The article has a programmatic principles in the concept of studying the Radon transform according to the computational (numerical) diameter and applying the theory of uniform distribution. The principal result is that the Radon transforms are qualified as optimal among the all possible linear functionals that are used to extract numerical information for generating a computational aggregate.
Citation:
N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva, “The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3, 98–104; Russian Math. (Iz. VUZ), 64:3 (2020), 87–92
\Bibitem{TemAbiAzh20}
\by N.~Temirgaliyev, Sh.~K.~Abikenova, Sh.~U.~Azhgaliev, G.~E.~Taugynbaeyva
\paper The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 3
\pages 98--104
\mathnet{http://mi.mathnet.ru/ivm9556}
\crossref{https://doi.org/10.26907/0021-3446-2020-3-98-104}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 3
\pages 87--92
\crossref{https://doi.org/10.3103/S1066369X2003010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528211100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083785961}
Linking options:
https://www.mathnet.ru/eng/ivm9556
https://www.mathnet.ru/eng/ivm/y2020/i3/p98
This publication is cited in the following 10 articles:
Galiya Taugynbayeva, Shapen Azhgaliyev, Aksaule Zhubanysheva, Nurlan Temirgaliyev, “Full C(N)D-study of computational capabilities of Lagrange polynomials”, Mathematics and Computers in Simulation, 227 (2025), 189
D. S. Anikonov, D. S. Konovalova, “Inversion Problem for Radon Transforms Defined on Pseudoconvex Sets”, Dokl. Math., 109:2 (2024), 175
D. S. Anikonov, D. S. Konovalova, “Radon transform inversion formula in the class of discontinuous functions”, J. Appl. Industr. Math., 18:3 (2024), 379–383
D. S. Anikonov, D. S. Konovalova, “The problem of an unknown boundary for generalized Radon transforms in even-dimensional space”, Siberian Adv. Math., 34:4 (2024), 261–267
D. S. Anikonov, D. S. Konovalova, “Obraschenie preobrazovaniya radona dlya razryvnykh funktsii v neogranichennykh oblastyakh”, Vladikavk. matem. zhurn., 26:4 (2024), 21–27
N. Temirgaliev, G. E. Taugynbaeva, A. Zh. Zhubanysheva, “Shirokomasshtabnaya ekvivalentnost norm preobrazovaniya Radona i porodivshei ee funktsii”, Izv. vuzov. Matem., 2023, no. 8, 87–92
N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev, E. E. Nurmoldin, G. E. Taugynbaeva, A. Zh. Zhubanysheva, “Ekvivalentnost zadach kompyuternoi tomografii c zadachami vosstanovleniya funktsii posredstvom konechnykh svertok v skheme kompyuternogo (vychislitelnogo) poperechnika”, Izv. vuzov. Matem., 2023, no. 12, 95–102
Dmitrii Sergeevich Anikonov, Sergey G. Kazantsev, Dina S. Konovalova, “A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform”, Journal of Inverse and Ill-posed Problems, 31:6 (2023), 959
N. Temirgaliyev, G. E. Taugynbayeva, A. Zh. Zhubanysheva, “Large-Scale Equivalence of Norms of the Radon Transform and Initial Function”, Russ Math., 67:8 (2023), 62
N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliyev, Ye. Ye. Nurmoldin, G. E. Taugynbayeva, A. Zh. Zhubanysheva, “Equivalence of Computed Tomography Problem with the Problem of Recovery of Functions by Finite Convolutions in a Scheme of Computational (Numerical) Diameter”, Russ Math., 67:12 (2023), 86