Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 3, Pages 98–104
DOI: https://doi.org/10.26907/0021-3446-2020-3-98-104
(Mi ivm9556)
 

This article is cited in 10 scientific papers (total in 10 papers)

Brief communications

The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory

N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva

L.N. Gumilyov Eurasian National University, 13 Kazhimukan str., Nur-Sultan, 010008 Republic of Kazakhstan
References:
Abstract: The article has a programmatic principles in the concept of studying the Radon transform according to the computational (numerical) diameter and applying the theory of uniform distribution. The principal result is that the Radon transforms are qualified as optimal among the all possible linear functionals that are used to extract numerical information for generating a computational aggregate.
Keywords: Radon transform, computational (numerical) diameter, quasi-Monte Carlo method, recoveryof functions, limiting error.
Received: 25.09.2019
Revised: 25.09.2019
Accepted: 25.09.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 3, Pages 87–92
DOI: https://doi.org/10.3103/S1066369X2003010X
Bibliographic databases:
Document Type: Article
UDC: 518:517.392
Language: Russian
Citation: N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva, “The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3, 98–104; Russian Math. (Iz. VUZ), 64:3 (2020), 87–92
Citation in format AMSBIB
\Bibitem{TemAbiAzh20}
\by N.~Temirgaliyev, Sh.~K.~Abikenova, Sh.~U.~Azhgaliev, G.~E.~Taugynbaeyva
\paper The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 3
\pages 98--104
\mathnet{http://mi.mathnet.ru/ivm9556}
\crossref{https://doi.org/10.26907/0021-3446-2020-3-98-104}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 3
\pages 87--92
\crossref{https://doi.org/10.3103/S1066369X2003010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528211100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083785961}
Linking options:
  • https://www.mathnet.ru/eng/ivm9556
  • https://www.mathnet.ru/eng/ivm/y2020/i3/p98
  • This publication is cited in the following 10 articles:
    1. Galiya Taugynbayeva, Shapen Azhgaliyev, Aksaule Zhubanysheva, Nurlan Temirgaliyev, “Full C(N)D-study of computational capabilities of Lagrange polynomials”, Mathematics and Computers in Simulation, 227 (2025), 189  crossref
    2. D. S. Anikonov, D. S. Konovalova, “Inversion Problem for Radon Transforms Defined on Pseudoconvex Sets”, Dokl. Math., 109:2 (2024), 175  crossref
    3. D. S. Anikonov, D. S. Konovalova, “Radon transform inversion formula in the class of discontinuous functions”, J. Appl. Industr. Math., 18:3 (2024), 379–383  mathnet  crossref  crossref
    4. D. S. Anikonov, D. S. Konovalova, “The problem of an unknown boundary for generalized Radon transforms in even-dimensional space”, Siberian Adv. Math., 34:4 (2024), 261–267  mathnet  crossref  crossref
    5. D. S. Anikonov, D. S. Konovalova, “Obraschenie preobrazovaniya radona dlya razryvnykh funktsii v neogranichennykh oblastyakh”, Vladikavk. matem. zhurn., 26:4 (2024), 21–27  mathnet  crossref
    6. N. Temirgaliev, G. E. Taugynbaeva, A. Zh. Zhubanysheva, “Shirokomasshtabnaya ekvivalentnost norm preobrazovaniya Radona i porodivshei ee funktsii”, Izv. vuzov. Matem., 2023, no. 8, 87–92  mathnet  crossref
    7. N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev, E. E. Nurmoldin, G. E. Taugynbaeva, A. Zh. Zhubanysheva, “Ekvivalentnost zadach kompyuternoi tomografii c zadachami vosstanovleniya funktsii posredstvom konechnykh svertok v skheme kompyuternogo (vychislitelnogo) poperechnika”, Izv. vuzov. Matem., 2023, no. 12, 95–102  mathnet  crossref
    8. Dmitrii Sergeevich Anikonov, Sergey G. Kazantsev, Dina S. Konovalova, “A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform”, Journal of Inverse and Ill-posed Problems, 31:6 (2023), 959  crossref
    9. N. Temirgaliyev, G. E. Taugynbayeva, A. Zh. Zhubanysheva, “Large-Scale Equivalence of Norms of the Radon Transform and Initial Function”, Russ Math., 67:8 (2023), 62  crossref
    10. N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliyev, Ye. Ye. Nurmoldin, G. E. Taugynbayeva, A. Zh. Zhubanysheva, “Equivalence of Computed Tomography Problem with the Problem of Recovery of Functions by Finite Convolutions in a Scheme of Computational (Numerical) Diameter”, Russ Math., 67:12 (2023), 86  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :145
    References:53
    First page:17
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025