Abstract:
For the given finite set of linear functionals we construct functions vanishing on them and give order estimates of their derivatives. We also give their different applications.
Keywords:
approximate differentiation, informative power of given functional class, computational (numerical) diameter, recovery of functions by inexact information, limiting error.
Citation:
N. Temirgaliev, A. Zhubanysheva, “Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 89–95; Russian Math. (Iz. VUZ), 61:3 (2017), 77–82
\Bibitem{TemZhu17}
\by N.~Temirgaliev, A.~Zhubanysheva
\paper Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 3
\pages 89--95
\mathnet{http://mi.mathnet.ru/ivm9221}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 3
\pages 77--82
\crossref{https://doi.org/10.3103/S1066369X17030100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408837700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014793842}
Linking options:
https://www.mathnet.ru/eng/ivm9221
https://www.mathnet.ru/eng/ivm/y2017/i3/p89
This publication is cited in the following 7 articles:
Galiya Taugynbayeva, Shapen Azhgaliyev, Aksaule Zhubanysheva, Nurlan Temirgaliyev, “Full C(N)D-study of computational capabilities of Lagrange polynomials”, Mathematics and Computers in Simulation, 227 (2025), 189
N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev, E. E. Nurmoldin, G. E. Taugynbaeva, A. Zh. Zhubanysheva, “Ekvivalentnost zadach kompyuternoi tomografii c zadachami vosstanovleniya funktsii posredstvom konechnykh svertok v skheme kompyuternogo (vychislitelnogo) poperechnika”, Izv. vuzov. Matem., 2023, no. 12, 95–102
N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliyev, Ye. Ye. Nurmoldin, G. E. Taugynbayeva, A. Zh. Zhubanysheva, “Equivalence of Computed Tomography Problem with the Problem of Recovery of Functions by Finite Convolutions in a Scheme of Computational (Numerical) Diameter”, Russ Math., 67:12 (2023), 86
A. B. Utesov, “Optimal Recovery of Functions from Numerical Information on Them and Limiting Error of the Optimal Computing Unit”, Math. Notes, 111:5 (2022), 759–767
N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva, “The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory”, Russian Math. (Iz. VUZ), 64:3 (2020), 87–92
Sh. U. Azhgaliev, Sh. K. Abikenova, “Ob otsenke snizu v zadache priblizhennogo vosstanovleniya funktsii po ikh znacheniyam preobrazovanii Radona”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 66, 24–34
N. Temirgaliev, A. Zh. Zhubanysheva, “Computational (Numerical) diameter in a context of general theory of a recovery”, Russian Math. (Iz. VUZ), 63:1 (2019), 79–86