Abstract:
In the note two lemmas are deduced, which seem to be useful while studing the small deviation probabilities of positive random variables. As the example so called small balls problem is examined.
Citation:
L. V. Rozovskii, “On small deviation probabilities of positive random variables”, Probability and statistics. Part 8, Zap. Nauchn. Sem. POMI, 320, POMI, St. Petersburg, 2004, 150–159; J. Math. Sci. (N. Y.), 137:1 (2006), 4561–4566
\Bibitem{Roz04}
\by L.~V.~Rozovskii
\paper On small deviation probabilities of positive random variables
\inbook Probability and statistics. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 320
\pages 150--159
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl603}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2115873}
\zmath{https://zbmath.org/?q=an:1080.60010}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 1
\pages 4561--4566
\crossref{https://doi.org/10.1007/s10958-006-0251-2}
Linking options:
https://www.mathnet.ru/eng/znsl603
https://www.mathnet.ru/eng/znsl/v320/p150
This publication is cited in the following 9 articles:
L. V. Rozovskii, “Small deviation probabilities for sums of independent positive random variables”, Vestn. St. Petersbg. Univ., Math., 7:3 (2020), 295–307
L. V. Rozovskii, “Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions”, Theory Probab. Appl., 62:3 (2018), 491–495
L. V. Rozovsky, “Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power”, J. Math. Sci. (N. Y.), 229:6 (2018), 767–771
L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II”, Theory Probab. Appl., 59:1 (2015), 168–177
L. V. Rozovsky, “Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero”, J. Math. Sci. (N. Y.), 204:1 (2015), 155–164
Rozovsky L., “Remarks on a link between the Laplace transform and distribution function of a nonnegative random variable”, Statist. Probab. Lett., 79:13 (2009), 1501–1508
L. V. Rozovskii, “On Gaussian Measure of Balls in a Hilbert Space”, Theory Probab. Appl., 53:2 (2009), 357–364
L. V. Rozovskii, “Small deviation probabilities for sums of independent positive random variables”, J. Math. Sci. (N. Y.), 147:4 (2007), 6935–6945
L. V. Rozovskii, “Small deviation probabilities for a class of distributions with a polinomial decreasing at zero”, J. Math. Sci. (N. Y.), 139:3 (2006), 6603–6607