Abstract:
In the note small deviation probabilities of sum of i.i.d. positive random variables are studied, whose distribution function has a polinomial decrease at zero.
Citation:
L. V. Rozovskii, “Small deviation probabilities for a class of distributions with a polinomial decreasing at zero”, Probability and statistics. Part 9, Zap. Nauchn. Sem. POMI, 328, POMI, St. Petersburg, 2005, 182–190; J. Math. Sci. (N. Y.), 139:3 (2006), 6603–6607
\Bibitem{Roz05}
\by L.~V.~Rozovskii
\paper Small deviation probabilities for a~class of distributions with a~polinomial decreasing at zero
\inbook Probability and statistics. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 328
\pages 182--190
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2214541}
\zmath{https://zbmath.org/?q=an:1101.60018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 3
\pages 6603--6607
\crossref{https://doi.org/10.1007/s10958-006-0376-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750526872}
Linking options:
https://www.mathnet.ru/eng/znsl314
https://www.mathnet.ru/eng/znsl/v328/p182
This publication is cited in the following 6 articles:
L. V. Rozovskii, “Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions”, Theory Probab. Appl., 62:3 (2018), 491–495
L. V. Rozovsky, “Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power”, J. Math. Sci. (N. Y.), 229:6 (2018), 767–771
L. V. Rozovsky, “Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero”, J. Math. Sci. (N. Y.), 204:1 (2015), 155–164
L. V. Rozovsky, “Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero”, J. Math. Sci. (N. Y.), 188:6 (2013), 748–752
Lanucara M., Borghi R., “Resampling and requantization of band-limited Gaussian stochastic signals with flat power spectrum”, Digital Signal Processing, 20:3 (2010), 900–915
L. V. Rozovskii, “Small deviation probabilities for sums of independent positive random variables”, J. Math. Sci. (N. Y.), 147:4 (2007), 6935–6945