Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 341, Pages 151–167 (Mi znsl141)  

This article is cited in 14 scientific papers (total in 14 papers)

Small deviation probabilities for sums of independent positive random variables

L. V. Rozovskii

Saint-Petersburg Chemical-Pharmaceutical Academy
References:
Abstract: In the note we give estimates of small deviation probabilities of a sum j1λjXj, where {λj} are nonnegative numbers and {Xj} are i.i.d. positive random variables, satisfying mild assumptions at zero and infinity.
Received: 01.11.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 4, Pages 6935–6945
DOI: https://doi.org/10.1007/s10958-007-0518-2
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: L. V. Rozovskii, “Small deviation probabilities for sums of independent positive random variables”, Probability and statistics. Part 11, Zap. Nauchn. Sem. POMI, 341, POMI, St. Petersburg, 2007, 151–167; J. Math. Sci. (N. Y.), 147:4 (2007), 6935–6945
Citation in format AMSBIB
\Bibitem{Roz07}
\by L.~V.~Rozovskii
\paper Small deviation probabilities for sums of independent positive random variables
\inbook Probability and statistics. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 341
\pages 151--167
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2363592}
\zmath{https://zbmath.org/?q=an:1137.60013}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 4
\pages 6935--6945
\crossref{https://doi.org/10.1007/s10958-007-0518-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36048937308}
Linking options:
  • https://www.mathnet.ru/eng/znsl141
  • https://www.mathnet.ru/eng/znsl/v341/p151
  • This publication is cited in the following 14 articles:
    1. Leonid Rozovsky, “On Small Deviation Asymptotics in the L2-Norm for Certain Gaussian Processes”, Mathematics, 9:6 (2021), 655  crossref
    2. L. V. Rozovskii, “Small deviation probabilities for a weighted sum of independent positive random variables with common distribution function that can decrease at zero fast enough”, Theory Probab. Appl., 63:1 (2018), 155–163  mathnet  crossref  crossref  isi  elib
    3. Ibragimov I.A. Lifshits M.A. Nazarov A.I. Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236  crossref  mathscinet  isi  scopus
    4. L. V. Rozovskii, “Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions”, Theory Probab. Appl., 62:3 (2018), 491–495  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Rozovsky L.V., “Small deviation probabilities for weighted sum of independent random variables with a common distribution that can decrease at zero fast enough”, Stat. Probab. Lett., 117 (2016), 192–200  crossref  mathscinet  zmath  isi  elib  scopus
    6. L. V. Rozovsky, “Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power”, J. Math. Sci. (N. Y.), 229:6 (2018), 767–771  mathnet  crossref  mathscinet
    7. L. V. Rozovskii, “Small deviation probabilities of weighted sums of independent positive random variables with a common distribution that decreases at zero not faster than a power”, Theory Probab. Appl., 60:1 (2016), 142–150  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. L. V. Rozovsky, “Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power”, J. Math. Sci. (N. Y.), 214:4 (2016), 540–545  mathnet  crossref  mathscinet
    9. Daniel Dobbs, Tai Melcher, “Small deviations for time-changed Brownian motions and applications to second-order chaos”, Electron. J. Probab., 19:none (2014)  crossref
    10. L.V. Rozovsky, “Small deviation probabilities of weighted sums under minimal moment assumptions”, Statistics & Probability Letters, 86 (2014), 1  crossref
    11. L. V. Rozovsky, “Small deviations of series of weighted positive random variables”, J. Math. Sci. (N. Y.), 176:2 (2011), 224–231  mathnet  crossref
    12. Rozovsky L., “Remarks on a link between the Laplace transform and distribution function of a nonnegative random variable”, Statist. Probab. Lett., 79:13 (2009), 1501–1508  crossref  mathscinet  zmath  isi  elib  scopus
    13. Rozovsky L., “Small deviations of series of weighted i.i.d. non-negative random variables with a positive mass at the origin”, Statistics & Probability Letters, 79:13 (2009), 1495–1500  crossref  mathscinet  zmath  isi  scopus
    14. Aurzada F., “A short note on small deviations of sequences of i.i.d. random variables with exponentially decreasing weights”, Statist. Probab. Lett., 78:15 (2008), 2300–2307  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :88
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025