Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 384, Pages 212–224 (Mi znsl3892)  

This article is cited in 7 scientific papers (total in 7 papers)

Small deviations of series of weighted positive random variables

L. V. Rozovsky

St. Petersburg Chemical-Pharmaceutical Academy, St. Petersburg, Russia
Full-text PDF (207 kB) Citations (7)
References:
Abstract: Let {Xj} be i.i.d. positive random variables and let {λj} be a sequence of nonnegative nonincreasing numbers. We continue to examine the conditions under which asymptotics of the log Laplace transform of j1λjXj has an explicit form at infinity. A behavior of supj1λjXj is also under consideration. Bibl. 14 titles.
Key words and phrases: small deviations, positive random variables, slowly varying function, regularly varying function, Laplace transform.
Received: 01.11.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 176, Issue 2, Pages 224–231
DOI: https://doi.org/10.1007/s10958-011-0413-8
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: L. V. Rozovsky, “Small deviations of series of weighted positive random variables”, Probability and statistics. Part 16, Zap. Nauchn. Sem. POMI, 384, POMI, St. Petersburg, 2010, 212–224; J. Math. Sci. (N. Y.), 176:2 (2011), 224–231
Citation in format AMSBIB
\Bibitem{Roz10}
\by L.~V.~Rozovsky
\paper Small deviations of series of weighted positive random variables
\inbook Probability and statistics. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 384
\pages 212--224
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3892}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 2
\pages 224--231
\crossref{https://doi.org/10.1007/s10958-011-0413-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959539589}
Linking options:
  • https://www.mathnet.ru/eng/znsl3892
  • https://www.mathnet.ru/eng/znsl/v384/p212
  • This publication is cited in the following 7 articles:
    1. L. V. Rozovskii, “Small deviation probabilities for a weighted sum of independent positive random variables with common distribution function that can decrease at zero fast enough”, Theory Probab. Appl., 63:1 (2018), 155–163  mathnet  crossref  crossref  isi  elib
    2. Ibragimov I.A. Lifshits M.A. Nazarov A.I. Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236  crossref  mathscinet  isi  scopus
    3. L. V. Rozovskii, “Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions”, Theory Probab. Appl., 62:3 (2018), 491–495  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Rozovsky L.V., “Small deviation probabilities for weighted sum of independent random variables with a common distribution that can decrease at zero fast enough”, Stat. Probab. Lett., 117 (2016), 192–200  crossref  mathscinet  zmath  isi  elib  scopus
    5. L. V. Rozovsky, “Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power”, J. Math. Sci. (N. Y.), 214:4 (2016), 540–545  mathnet  crossref  mathscinet
    6. Dobbs D., Melcher T., “Small Deviations For Time-Changed Brownian Motions and Applications To Second-Order Chaos”, Electron. J. Probab., 19 (2014), 85, 1–23  crossref  mathscinet  isi  elib  scopus
    7. L. V. Rozovsky, “Small deviations of series of independent nonnegative random variables with smooth weights”, Theory Probab. Appl., 58:1 (2014), 121–137  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :60
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025