Loading [MathJax]/jax/output/CommonHTML/config.js
Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2017, Volume 10, Issue 2, Pages 107–123
DOI: https://doi.org/10.14529/mmp170209
(Mi vyuru376)
 

This article is cited in 6 scientific papers (total in 6 papers)

Programming & Computer Software

Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity

M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin

Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (686 kB) Citations (6)
References:
Abstract: An initial-boundary value problem for plasma ion-sound wave equation is considered. Boltzmann distribution is approximated by a quadratic function. The local (in time) solvability is proved and the analitycal-numerical investigation of the solution's decay is performed for the considered problem. The sufficient conditions for solution's decay and an upper bound of the decay moment are obtained by the test function method. In some numerical examples, the estimation is specified by Richardson's mesh refinement method. The time interval for numerical modelling is chosen according to the decay moment's analytical upper bound. In return, numerical calculations refine the moment and the space-time pattern of the decay. Thus, analytical and numerical parts of the investigation amplify each other.
Keywords: blow-up; nonlinear initial-boundary value problem; Sobolev type equation; exponential nonlinearity; Richardson extrapolation.
Received: 07.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.957+519.6
Language: Russian
Citation: M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 107–123
Citation in format AMSBIB
\Bibitem{KorLukOvs17}
\by M.~O.~Korpusov, D.~V.~Lukyanenko, E.~A.~Ovsyannikov, A.~A.~Panin
\paper Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2017
\vol 10
\issue 2
\pages 107--123
\mathnet{http://mi.mathnet.ru/vyuru376}
\crossref{https://doi.org/10.14529/mmp170209}
\elib{https://elibrary.ru/item.asp?id=29274784}
Linking options:
  • https://www.mathnet.ru/eng/vyuru376
  • https://www.mathnet.ru/eng/vyuru/v10/i2/p107
  • This publication is cited in the following 6 articles:
    1. M. O. Korpusov, A. A. Panin, A. E. Shishkov, “On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type”, Izv. Math., 85:1 (2021), 111–144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    3. M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. I. I. Kolotov, A. A. Panin, “On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study”, Math. Notes, 105:5 (2019), 694–706  mathnet  crossref  crossref  mathscinet  isi  elib
    5. M. O. Korpusov, A. K. Matveeva, D. V. Lukyanenko, “Diagnostika mgnovennogo razrusheniya resheniya v nelineinom uravnenii teorii voln v poluprovodnikakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:4 (2019), 104–113  mathnet  crossref
    6. M. O. Korpusov, D. V. Lukyanenko, A. D. Nekrasov, “Analytic-numerical investigation of combustion in a nonlinear medium”, Comput. Math. Math. Phys., 58:9 (2018), 1499–1509  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :105
    References:74
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025