Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 3, Pages 449–501
DOI: https://doi.org/10.1070/IM8820
(Mi im8820)
 

This article is cited in 4 scientific papers (total in 4 papers)

Blow-up instability in non-linear wave models with distributed parameters

M. O. Korpusovab, E. A. Ovsyannikovab

a Faculty of Physics, Lomonosov Moscow State University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: We consider two model non-linear equations describing electric oscillations in systems with distributed parameters on the basis of diodes with non-linear characteristics. We obtain equivalent integral equations for classical solutions of the Cauchy problem and the first and second initial-boundary value problems for the original equations in the half-space $x>0$. Using the contraction mapping principle, we prove the local-in-time solubility of these problems. For one of these equations, we use the Pokhozhaev method of non-linear capacity to deduce a priori bounds giving rise to finite-time blow-up results and obtain upper bounds for the blow-up time. For the other, we use a modification of Levine's method to obtain sufficient conditions for blow-up in the case of sufficiently large initial data and give a lower bound for the order of growth of a functional with the meaning of energy. We also obtain an upper bound for the blow-up time.
Keywords: non-linear equations of Sobolev type, destruction, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
This paper was written with the support of the programme ‘5-100’ of the Peoples' Friendship University of Russia.
Received: 05.06.2018
Revised: 20.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 35B44
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501
Citation in format AMSBIB
\Bibitem{KorOvs20}
\by M.~O.~Korpusov, E.~A.~Ovsyannikov
\paper Blow-up instability in non-linear wave models with distributed parameters
\jour Izv. Math.
\yr 2020
\vol 84
\issue 3
\pages 449--501
\mathnet{http://mi.mathnet.ru/eng/im8820}
\crossref{https://doi.org/10.1070/IM8820}
\zmath{https://zbmath.org/?q=an:1442.35046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..449K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541857000001}
\elib{https://elibrary.ru/item.asp?id=43306532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087364024}
Linking options:
  • https://www.mathnet.ru/eng/im8820
  • https://doi.org/10.1070/IM8820
  • https://www.mathnet.ru/eng/im/v84/i3/p15
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:519
    Russian version PDF:78
    English version PDF:42
    References:93
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025