Processing math: 100%
Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2019, Volume 189, Number 12, Pages 1249–1284
DOI: https://doi.org/10.3367/UFNr.2019.08.038643
(Mi ufn6294)
 

This article is cited in 25 scientific papers (total in 27 papers)

REVIEWS OF TOPICAL PROBLEMS

Hyperbolic metamaterials: production, properties, applications, and prospects

M. V. Davidovich

Chernyshevskii Saratov State University
References:
Abstract: Manmade media (MMMs) consisting of uniaxial photonic crystals with inserts of layers (films) or cylinders embedded in a periodic way into a dielectric substrate with dielectric permeability (DP) are considered. Approximate model-based and accurate electrodynamic methods for describing such MMMs, which are referred to in the case of metal (conductive) or ferrite (metaatom) inserts as a ‘hyperbolic metamaterial’ (HMM), are analyzed. Homogenization methods, the role of dissipation, spatial dispersion (SD), and slow plasmon-polaritons are reviewed. The feasibility of obtaining the hyperbolic dispersion law in a macroscopic description of DP of inserts using the Drude–Lorentz model is studied. In the general case with dissipation and SD, the surface of the Fresnel-equation isofrequencies is shown to differ from a rotation hyperboloid and to be bounded. The ambiguity of a description based on effective material parameters, the effect of dissipation and SD on hyperbolicity, currently observable and possible physical phenomena, and HMM applications are discussed.
Funding agency Grant number
Russian Science Foundation 16-19-10033
Ministry of Science and Higher Education of the Russian Federation 3.1155.2014/K
This study was supported by the Ministry of Education and Science of Russia within the Project Part of the State Assignment in the field of research activity no. 3.1155.2014/K and the Russian Science Foundation (project no. 16-19-10033).
Received: April 19, 2018
Revised: December 20, 2018
Accepted: August 13, 2019
English version:
Physics–Uspekhi, 2019, Volume 62, Issue 12, Pages 1173–1207
DOI: https://doi.org/10.3367/UFNe.2019.08.038643
Bibliographic databases:
Document Type: Article
PACS: 42.70.Qs, 78.67.Pt, 81.05.Xj
Language: Russian
Citation: M. V. Davidovich, “Hyperbolic metamaterials: production, properties, applications, and prospects”, UFN, 189:12 (2019), 1249–1284; Phys. Usp., 62:12 (2019), 1173–1207
Citation in format AMSBIB
\Bibitem{Dav19}
\by M.~V.~Davidovich
\paper Hyperbolic metamaterials: production, properties, applications, and prospects
\jour UFN
\yr 2019
\vol 189
\issue 12
\pages 1249--1284
\mathnet{http://mi.mathnet.ru/ufn6294}
\crossref{https://doi.org/10.3367/UFNr.2019.08.038643}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019PhyU...62.1173D}
\elib{https://elibrary.ru/item.asp?id=43260775}
\transl
\jour Phys. Usp.
\yr 2019
\vol 62
\issue 12
\pages 1173--1207
\crossref{https://doi.org/10.3367/UFNe.2019.08.038643}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000518758100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082014296}
Linking options:
  • https://www.mathnet.ru/eng/ufn6294
  • https://www.mathnet.ru/eng/ufn/v189/i12/p1249
  • This publication is cited in the following 27 articles:
    1. Guangshen Li, Zhihao Sun, Zihao Guo, Peng Wang, Benli Du, Shaoyao Tian, Han Ding, Yu Qiu, Jingyu Bi, Lei Qian, “Dynamic modulation of permittivity properties via compression of carbon nanotube-impregnated cotton for wide epsilon-near-zero bandwidth”, Adv Compos Hybrid Mater, 7:3 (2024)  crossref
    2. M. V. Davidovich, “Resonant Tunneling of Photons in Layered Optical Nanostructures (Metamaterials)”, Tech. Phys., 69:6 (2024), 1521  crossref
    3. Mai Medhat, Cherstina Malek, Mehdi Tlija, Mostafa R. Abukhadra, Stefano Bellucci, Hussein A. Elsayed, Ahmed Mehaney, “One-Dimensional Photonic Crystals Comprising Two Different Types of Metamaterials for the Simple Detection of Fat Concentrations in Milk Samples”, Nanomaterials, 14:21 (2024), 1734  crossref
    4. A. V. Lobanov, “Chislennaya optimizatsiya v zadachakh dizaina mnogosloinykh obolochek, sostoyaschikh iz giperbolicheskikh metamaterialov”, Dalnevost. matem. zhurn., 24:2 (2024), 220–234  mathnet  crossref
    5. B. L. Krit, N. V. Morozova, S. Ya. Betsofen, Wu Ruizhi, V. M. Medvetskova, Ya. V. Dolgushin, T. Yu. Mogilnaya, “Photocatalytic Activity of a Coating Synthesized in Electrolytic Plasma on the Surface of Ultralight Magnesium Alloy”, Surf. Engin. Appl.Electrochem., 60:6 (2024), 831  crossref
    6. V. V. Klimov, “Optical nanoresonators”, Phys. Usp., 66:3 (2023), 263–287  mathnet  crossref  crossref  adsnasa  isi
    7. Yaoxian Zheng, Fahim Khan, B. Asrafali, Qiong Wang, “Photonic crystal waveguides composed of hyperbolic metamaterials for high-fom nano-sensing”, Crystals, 13:9 (2023), 1389  crossref
    8. Zhida Liu, Jiayao Liu, Sichao Qu, Zhaona Wang, “Omnidirectional broadband phase modulation by total internal reflection”, Opt. Lett., 48:21 (2023), 5743  crossref
    9. A. Moradi, “Hyperbolic metamaterials”, Theory of Electrostatic Waves in Hyperbolic Metamaterials, Springer Series in Optical Sciences, 245, Springer, Cham, 2023, 1–37  crossref  mathscinet
    10. M. Durach, “Electromagnetic scattering by bianisotropic spheres”, Applied Sciences, 13:8 (2023), 5169  crossref
    11. Muhammad, C. W. Lim, “From photonic crystals to seismic metamaterials: a review via phononic crystals and acoustic metamaterials”, Arch. Comput. Method Eng., 29:2 (2022), 1137–1198  crossref  isi  scopus
    12. N. V. Selina, “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lens”, Phys. Usp., 65:4 (2022), 406–414  mathnet  crossref  crossref  adsnasa  isi
    13. T. G. Mackay, A. Lakhtakia, “Toward morphologically induced anisotropy in thermally hysteretic dielectric properties of vanadium dioxide”, AIP Advances, 12:10 (2022), 105026  crossref
    14. Yaoxian Zheng, Qiong Wang, Mi Lin, Luigi Bibbò, Zhengbiao Ouyang, “Twisted bands with degenerate points of photonic hypercrystals in infrared region”, Nanomaterials, 12:12 (2022), 1985  crossref
    15. S. A. Dvinin, O. A. Sinkevich, D. K. Solikhov, Z. A. Kodirzoda, “On the spectra of natural waves in a plasma waveguide in the presence of collisions”, Plasma Phys. Rep., 48:4 (2022), 438  crossref
    16. M. V. Davidovich, “Plazmon-polyaritony Dyakonova vdol giperbolicheskogo metamateriala”, Kompyuternaya optika, 45:1 (2021), 48–57  mathnet  crossref
    17. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 64:8 (2021), 858–859  mathnet  crossref  crossref  adsnasa  isi
    18. V. V. Klimov, “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles”, Phys. Usp., 64:10 (2021), 990–1020  mathnet  crossref  crossref  isi
    19. M. V. Davidovich, “Can isotropic negative permittivity ϵ and permeability μ metamaterials exist?”, J. Exp. Theor. Phys., 132:2 (2021), 159–176  crossref  isi
    20. Andrey N. Volobuev, Tatyana A. Antipova, Kaira A. Adyshirin-Zade, “Interaction of electromagnetic wave and metamaterial with inductive type chiral inclusions”, PWPRS, 24:2 (2021), 22  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :78
    References:54
    First page:33
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025