Abstract:
The most important direction in the development of fundamental and applied physics is the study of the properties of optical systems at nanoscales for creating optical and quantum computers, biosensors, single-photon sources for quantum informatics, DNA sequencing devices, detectors of various fields, etc. In all these cases, nanosize light sources such as dye molecules, quantum dots (epitaxial or colloidal), color centers in crystals, and nanocontacts in metals are of utmost importance. In the nanoenvironment, the characteristics of these elementary quantum systems—pumping rates, radiative and nonradiative decay rates, the local density of states, lifetimes, level shifts—experience changes, which can be used to create nanosize light sources with the desired properties. Modern theoretical and experimental works on controlling the emission of elementary quantum systems with the help of plasmonic and dielectric nanostructures, metamaterials, and metamaterial nanoparticles are analyzed.
Citation:
V. V. Klimov, “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles”, UFN, 191:10 (2021), 1044–1076; Phys. Usp., 64:10 (2021), 990–1020
\Bibitem{Кли21}
\by V.~V.~Klimov
\paper Control of the emission of elementary quantum systems using metamaterials and nanometaparticles
\jour UFN
\yr 2021
\vol 191
\issue 10
\pages 1044--1076
\mathnet{http://mi.mathnet.ru/ufn6901}
\crossref{https://doi.org/10.3367/UFNr.2021.01.038910}
\transl
\jour Phys. Usp.
\yr 2021
\vol 64
\issue 10
\pages 990--1020
\crossref{https://doi.org/10.3367/UFNe.2021.01.038910}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000740826300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123453879}
Linking options:
https://www.mathnet.ru/eng/ufn6901
https://www.mathnet.ru/eng/ufn/v191/i10/p1044
This publication is cited in the following 11 articles:
V. S. Lebedev, A. D. Kondorskiy, “Optics of plasmon-exciton nanostructures: theoretical models and physical phenomena in metal/J-aggregate systems”, Phys. Usp., 68:1 (2025), 46–86
N.P. Kovalets, E.P. Kozhina, I.V. Razumovskaya, A.I. Arzhanov, A.V. Naumov, “Scratching of metallized polymer films by Vickers indenter as a method for controlled production of SERS-active metasurfaces”, Journal of Luminescence, 275 (2024), 120803
V. V. Klimov, “Quantification of single-molecule fluorescence correlation spectroscopy in a zero-mode waveguide with a sticky surface”, Phys. Rev. Applied, 22:2 (2024)
V. V. Климов, Pis'ma v Zh. Èksper. Teoret. Fiz., 120:4 (2024), 238–244
S. Smeets, B. Maes, G. Rosolen, “Interference between multipolar two-photon transitions in quantum emitters near plasmonic nanostructures”, Discover Nano, 19:1 (2024)
V. V. Klimov, “Correlation Theory of Fluorescence Fluctuations in Single Molecules Randomly Moving in a Nanowell”, Jetp Lett., 120:4 (2024), 230
V. V. Klimov, “Optical nanoresonators”, Phys. Usp., 66:3 (2023), 263–287
Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 66:2 (2023), 219–220
L. S. Dolin, “On the role of phantom sources in the theory of superlenses”, Phys. Usp., 66:8 (2023), 846–851
V. V. Klimov, A. R. Bekirov, B. S. Luk'yanchuk, “Trapped modes in particles with a negative refractive index”, Opt. Lett., 48:21 (2023), 5795
N. V. Selina, “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lens”, Phys. Usp., 65:4 (2022), 406–414