Abstract:
We study the geometry of abstract radial functional Hilbert spaces
stable with respect to dividing and possessing an unconditional basis of reproducing kernels. We obtain a simple necessary condition ensuring the existence of such bases in terms of the sequence $\| z^n\|$, $n\in \mathbb{N}\cup \{ 0\}$. We also obtain a sufficient condition for the norm and the Bergman function of the space to be recovered by a sequence of the norms of monomials. Two main statements we prove are as follows. Let $ H $ be a radial functional Hilbert space of entire functions stable with respect to dividing and let the system of monomials $\{z^n\}$, $n\in \mathbb{N}\cup \{ 0\}$, be complete in this space.
1. If the space $H$ possesses an unconditional basis of reproducing kernels, then
\begin{equation*}
\|z^n\| \asymp e^{u(n)},\quad n\in \mathbb{N}\cup \{0\},
\end{equation*}
where the sequence $u(n)$ is convex, that is
\begin{equation*}
u(n+1)+u(n-1)-2u(n)\ge 0,\quad n\in \mathbb{N}.
\end{equation*}
2. Let $u_{n,k}=u(n)-u(k)-(u(n)-u(n-1))(n-k)$. If $\mathcal U$ is the matrix with entries $e^{2u_{n,k}}$, $n,k\in \mathbb{N}\cup \{ 0\}$, and
\begin{equation*}
\left \| \mathcal U\right \| :=\sup_n\left (\sum\limits_ke^ {2u_{n,k}}\right )^{\frac 12}<\infty ,
\end{equation*}
then
2.1. the space $H$ as a Banach space is isomorphic to the space of entire functions with the norm
\begin{equation*}
\|F\|^2=\frac 1 {2\pi }\int\limits_0^\infty \int\limits_0^{2\pi }|F(re^{i\varphi }) |^2e^{-2\widetilde u(\ln r)}d\varphi d \widetilde u_+'(\ln r),
\end{equation*}
where $\widetilde u$ is the Young conjugate of the piecewise-linear function $u(t)$;
2.2. the Bergman function of the space $H$ satisfies the condition
\begin{equation*}
K(z)\asymp e^{2\widetilde u(\ln |z|)},\quad z\in \mathbb{C}.
\end{equation*}
The research of the first author is made in the framework of the development program of Scientific and
Educational Mathematical Center of Privolzhsky Federal District, additional agreement no. 075-02-2020-1421/1
to agreement no. 075-02-2020-1421. The second author is supported by Russian Foundation for Basic Researches
(project no. 18-01-00095-a).
Citation:
K. P. Isaev, R. S. Yulmukhametov, “Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels”, Ufa Math. J., 12:4 (2020), 55–63
\Bibitem{IsaYul20}
\by K.~P.~Isaev, R.~S.~Yulmukhametov
\paper Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 4
\pages 55--63
\mathnet{http://mi.mathnet.ru/eng/ufa535}
\crossref{https://doi.org/10.13108/2020-12-4-55}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607979900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101532091}
Linking options:
https://www.mathnet.ru/eng/ufa535
https://doi.org/10.13108/2020-12-4-55
https://www.mathnet.ru/eng/ufa/v12/i4/p56
This publication is cited in the following 4 articles:
K. P. Isaev, R. S. Yulmukhametov, “Riesz bases of normalized reproducing kernels in Fock type spaces”, Anal.Math.Phys., 12:1 (2022)
K. P. Isaev, R. S. Yulmukhametov, “Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions”, Probl. anal. Issues Anal., 10(28):3 (2021), 41–52
K. P. Isaev, R. S. Yulmukhametov, “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Lobachevskii J. Math., 42:6, SI (2021), 1154–1165
K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Necessary Condition for the Existence of Unconditional Bases of Reproducing Kernels for Hilbert Spaces of Entire Functions”, J Math Sci, 257:5 (2021), 662