Abstract:
We consider a reproducing kernel radial Hilbert space of entire functions and prove the equivalence of several sufficient conditions for the existence of unconditional bases of reproducing kernels in such spaces.
Citation:
K. P. Isaev, R. S. Yulmukhametov, “Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions”, Probl. Anal. Issues Anal., 10(28):3 (2021), 41–52
\Bibitem{IsaYul21}
\by K.~P.~Isaev, R.~S.~Yulmukhametov
\paper Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions
\jour Probl. Anal. Issues Anal.
\yr 2021
\vol 10(28)
\issue 3
\pages 41--52
\mathnet{http://mi.mathnet.ru/pa330}
\crossref{https://doi.org/10.15393/j3.art.2021.10910}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710713600001}
Linking options:
https://www.mathnet.ru/eng/pa330
https://www.mathnet.ru/eng/pa/v28/i3/p41
This publication is cited in the following 2 articles:
K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights”, Anal.Math.Phys., 13:6 (2023)
K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Unconditional Bases of Reproducing Kernels for Fock Spaces with Nonradial Weights”, J Math Sci, 260:6 (2022), 748