Abstract:
By the example of molybdenum, the detailed correlation investigation between the volume thermal expansion coefficient, o(T), and the heat capacity, C(T), of the refractory metal is carried out. It is shown that distinct correlation of o(C) takes place not only within the low temperature region where it is linear and is known as the Grüneisen law but also within a much wider temperature region, up to the melting point of the metal. Sufficient deviation of the o(C) dependency from the low temperature linear behavior takes place when the heat capacity achieves its classical Dulong and Petit limit, 3R.
Citation:
V. Yu. Bodryakov, “Correlation of temperature dependencies of the thermal expansion and heat capacity of refractory metal up to the melting point: Molybdenum”, TVT, 52:6 (2014), 863–869; High Temperature, 52:6 (2014), 840–845
\Bibitem{Bod14}
\by V.~Yu.~Bodryakov
\paper Correlation of temperature dependencies of the thermal expansion and heat capacity of refractory metal up to the melting point: Molybdenum
\jour TVT
\yr 2014
\vol 52
\issue 6
\pages 863--869
\mathnet{http://mi.mathnet.ru/tvt2103}
\crossref{https://doi.org/10.7868/S004036441404005X}
\elib{https://elibrary.ru/item.asp?id=22403799}
\transl
\jour High Temperature
\yr 2014
\vol 52
\issue 6
\pages 840--845
\crossref{https://doi.org/10.1134/S0018151X14040051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346405400009}
\elib{https://elibrary.ru/item.asp?id=24021426}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919682624}
Linking options:
https://www.mathnet.ru/eng/tvt2103
https://www.mathnet.ru/eng/tvt/v52/i6/p863
This publication is cited in the following 22 articles:
X. Gong, A. Dal Corso, “Ab initio quasi-harmonic thermoelasticity of molybdenum at high temperature and pressure”, The Journal of Chemical Physics, 160:24 (2024)
Anne M. Hofmeister, “Theory and Measurement of Heat Transport in Solids: How Rigidity and Spectral Properties Govern Behavior”, Materials, 17:18 (2024), 4469
Xuejun Gong, Andrea Dal Corso, “High-temperature and high-pressure thermoelasticity of hcp metals from
ab initio
quasiharmonic free energy calculations: The beryllium case”, Phys. Rev. B, 110:9 (2024)
I. N. Ganiev, K. M. Khodjanazarov, F. K. Khodzhaev, B. B. Ashov, “Temperature Dependence of the Heat Capacity and Changes in the Thermodynamic Functions of BLi (PbSb15Sn10Li) Lead Babbitt Doped with Lithium”, Metallurgist, 67:1-2 (2023), 240
Anne M. Hofmeister, Everett M. Criss, Robert E. Criss, “Thermodynamic Relationships for Perfectly Elastic Solids Undergoing Steady-State Heat Flow”, Materials, 15:7 (2022), 2638
G. Robert, V. Dubois, P. Legrand, “Using maximum likelihood estimation approach to adjust parameters of multiphase equations of state: Molybdenum as an example”, Journal of Applied Physics, 131:10 (2022)
Tang M. Pan X. Zhang M. Wen H., “Scaling Behavior Between Heat Capacity and Thermal Expansion in Solids”, Chin. Phys. Lett., 38:2 (2021), 026501
Magomedov M.N., “Calculation of the Surface Energy of a Crystal and Its Temperature and Pressure Dependence”, J. Surf. Ingestig., 14:6 (2020), 1208–1220
Magomedov M.N., “a Method For the Parametrization of the Pairwise Interatomic Potential”, Phys. Solid State, 62:7 (2020), 1126–1131
Bodryakov V.Yu., “Joint Analysis of the Heat Capacity and Thermal Expansion of Solid Potassium Chloride”, Inorg. Mater., 56:6 (2020), 633–647
V. Yu. Bodryakov, “Joint study of temperature dependences of thermal expansion and heat capacity of solid beryllium”, High Temperature, 56:2 (2018), 177–183
D. V. Minakov, M. A. Paramonov, P. R. Levashov, “Ab initio inspection of thermophysical experiments for molybdenum near melting”, AIP Adv., 8:12 (2018), 125012
E. N. Akhmedov, “Molybdenum lattice properties at high pressure”, J. Phys. Chem. Solids, 121 (2018), 62–66
O. V. Fat'yanov, P. D. Asimow, “Equation of state of $\mathrm{Mo}$ from shock compression experiments on preheated samples”, J. Appl. Phys., 121:11 (2017), 115904
V. Yu. Bodryakov, “Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting point of tantalum”, High Temperature, 54:3 (2016), 316–321
V. Yu. Bodryakov, A. A. Bykov, “Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity”, Russ. Metall., 2016:5 (2016), 450
V. Yu. Bodryakov, “Correlation of temperature dependences of thermal expansion and the heat capacity of refractory metal up to the melting point: Tungsten”, High Temperature, 53:5 (2015), 643–648
Bodryakov V.Yu., Babintsev Yu.N., “Correlation Analysis of the Heat Capacity and Thermal Expansion of Solid Mercury”, Phys. Solid State, 57:6 (2015), 1264–1269
Bodryakov V.Yu., “Correlation Between the Thermal Expansion Coefficient and Heat Capacity of An Inert-Gas Single Crystal: Krypton”, Tech. Phys., 60:3 (2015), 381–384