Abstract:
In continuing the series of publications started by the article about molybdenum, a detailed study of the correlation between the volume thermal expansion coefficient, o(T)o(T), and the heat capacity, C(T)C(T), of another refractory metal, tungsten, is carried out. It is shown that a distinct correlation of o(C)o(C) takes place not only at low temperatures, where it is linear and is known as the Grüneisen law, but also within a much wider temperature region, up to the melting point of the metal. A significant deviation from the low-temperature behavior of the linear dependence of o(C)o(C) occurs when the heat capacity reaches its classical Dulong and Petit limit, 3R3R. The concept of the temperature dependence of the differential Grüneisen parameter, γ′∼(∂o/∂C) is introduced, and its evaluation is proposed.
Citation:
V. Yu. Bodryakov, “Correlation of temperature dependences of thermal expansion and the heat capacity of refractory metal up to the melting point: Tungsten”, TVT, 53:5 (2015), 676–682; High Temperature, 53:5 (2015), 643–648
\Bibitem{Bod15}
\by V.~Yu.~Bodryakov
\paper Correlation of temperature dependences of thermal expansion and the heat capacity of refractory metal up to the melting point: Tungsten
\jour TVT
\yr 2015
\vol 53
\issue 5
\pages 676--682
\mathnet{http://mi.mathnet.ru/tvt169}
\crossref{https://doi.org/10.7868/S0040364415040067}
\elib{https://elibrary.ru/item.asp?id=24045263}
\transl
\jour High Temperature
\yr 2015
\vol 53
\issue 5
\pages 643--648
\crossref{https://doi.org/10.1134/S0018151X15040069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363057000006}
\elib{https://elibrary.ru/item.asp?id=24961753}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944450633}
Linking options:
https://www.mathnet.ru/eng/tvt169
https://www.mathnet.ru/eng/tvt/v53/i5/p676
This publication is cited in the following 22 articles:
Yi-Chieh Yang, Luca Serafini, Nicolas Gauquelin, Johan Verbeeck, Joerg R. Jinschek, “Improving the accuracy of temperature measurement on TEM sample using Plasmon Energy Expansion Thermometry (PEET): Addressing Sample Thickness Effects”, Ultramicroscopy, 2025, 114102
Xuejun Gong, Andrea Dal Corso, “Pressure and temperature dependent ab-initio quasi-harmonic thermoelastic properties of tungsten”, J. Phys.: Condens. Matter, 36:28 (2024), 285702
C. Chen, Y. Chen, X. Han, K.L. Li, S. Wang, Y.F. Zhang, Y.R. Mao, J.W. Coenen, J. Wang, L.M. Luo, “Microstructure and failure mechanism of Y2O3 coating on the W fiber in Wf/W composites during field assisted sintering”, Journal of Materials Research and Technology, 30 (2024), 8661
Anne M. Hofmeister, “Theory and Measurement of Heat Transport in Solids: How Rigidity and Spectral Properties Govern Behavior”, Materials, 17:18 (2024), 4469
D. E. Cherepanov, A. V. Burdakov, L. N. Vyacheslavov, S. R. Kazantsev, I. V. Kandaurov, A. A. Kasatov, A.V. Krasilnikov, V. A. Popov, G. A. Ryzhkov, A. A. Shoshin, “Testing of Boron Carbide Coatings with a Pulsed Thermal Load Possible in the Divertor Zone of the ITER Tokamak”, Phys. Atom. Nuclei, 87:S1 (2024), S99
S. V. Terekhov, “Thermal Physical Properties of Metals in a Quasi-Two-Phase Model”, Fizika metallov i metallovedenie, 124:12 (2023), 1261
Z.Y. Qin, W.L. Li, Z.H. Sun, J.H. Ji, H.L. Wu, L. Jin, “Analysis of residual thermal stress for AlN crystal growth by PVT”, Vacuum, 214 (2023), 112237
Nikolay V. Kozyrev, Vladimir V. Gordeev, “Thermodynamic Properties and Equation of State for Tungsten”, Crystals, 13:10 (2023), 1470
S. V. Terekhov, “Thermophysical Properties of Metals in Quasi-Two-Phase Model”, Phys. Metals Metallogr., 124:12 (2023), 1293
Milosevic N.D., “Application of the Subsecond Calorimetry Technique With Both Contact and Radiance Temperature Measurements: Case Study on Solid Phase Tungsten At Very High Temperatures”, J. Therm. Anal. Calorim., 147:8 (2022), 4935–4943
Anne M. Hofmeister, Everett M. Criss, Robert E. Criss, “Thermodynamic Relationships for Perfectly Elastic Solids Undergoing Steady-State Heat Flow”, Materials, 15:7 (2022), 2638
Aurélien Favre, Vincent Morel, Arnaud Bultel, Gilles Godard, Said Idlahcen, Mathilde Diez, Christian Grisolia, Frédéric Perry, “Interface detection by picosecond Laser-Induced Breakdown Spectroscopy (LIBS): Application to a physical vapor deposited tungsten layer on a copper-chromium-zirconium substrate”, Optics & Laser Technology, 150 (2022), 107913
Tang M. Pan X. Zhang M. Wen H., “Scaling Behavior Between Heat Capacity and Thermal Expansion in Solids”, Chin. Phys. Lett., 38:2 (2021), 026501
Kramynin S.P., “Theoretical Study of the Size Dependencies of the Thermodynamic Properties of Tungsten At Various Pressures and Temperatures”, J. Phys. Chem. Solids, 152 (2021), 109964
M. N. Magomedov, “Calculation of the surface energy of a crystal and its temperature and pressure dependence”, J. Surf. Ingestig., 14:6 (2020), 1208–1220
S. Alvi, O. A. Waseem, F. Akhtar, “High temperature performance of spark plasma sintered w-0.5(tativcr)(0.5) alloy”, Metals, 10:11 (2020), 1512
M. N. Magomedov, “A method for the parametrization of the pairwise interatomic potential”, Phys. Solid State, 62:7 (2020), 1126–1131
V. Yu. Bodryakov, “Joint analysis of the heat capacity and thermal expansion of solid potassium chloride”, Inorg. Mater., 56:6 (2020), 633–647
V. Yu. Bodryakov, “Isolation of the magnetic contribution to the thermal expansion of nickel at ferromagnetic transformation on the base of analysis of $\beta(C_p)$ correlation dependence”, High Temperature, 58:2 (2020), 213–217
V. Yu. Bodryakov, “Joint study of temperature dependences of thermal expansion and heat capacity of solid beryllium”, High Temperature, 56:2 (2018), 177–183