Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 5–22 (Mi tvp3761)  

This article is cited in 14 scientific papers (total in 15 papers)

On some basic concepts and some basic stochastic models used in finance

A. N. Shiryaev

Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: This paper can be viewed as an introduction to the papers of this issue devoted to some theoretical-probabilistic problems in financial mathematics. In this paper, we describe key structures of finance theory (§ 1), present a brief historical bibliography (§ 2), and consider (§ 3) stochastic models of a stock exchange. In addition, the paper offers an insight into the problems of option pricing (§ 4).
Keywords: finance theory, financial mathematics, stock exchange models, bond and stock, options, warrants, futures contracts.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 1–13
DOI: https://doi.org/10.1137/1139001
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, “On some basic concepts and some basic stochastic models used in finance”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 5–22; Theory Probab. Appl., 39:1 (1994), 1–13
Citation in format AMSBIB
\Bibitem{Shi94}
\by A.~N.~Shiryaev
\paper On some basic concepts and some basic stochastic models used in finance
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 5--22
\mathnet{http://mi.mathnet.ru/tvp3761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348189}
\zmath{https://zbmath.org/?q=an:0834.60071|0829.60054}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 1--13
\crossref{https://doi.org/10.1137/1139001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800001}
Linking options:
  • https://www.mathnet.ru/eng/tvp3761
  • https://www.mathnet.ru/eng/tvp/v39/i1/p5
  • This publication is cited in the following 15 articles:
    1. M. M. Dubovikov, N. V. Starchenko, “Econophysics and the fractal analysis of financial time series”, Phys. Usp., 54:7 (2011), 754–761  mathnet  crossref  crossref  adsnasa  isi
    2. Rozhkova S.V., Rozhkova O.V., “Informatsionnyi aspekt v sovmestnoi zadache nepreryvno-diskretnoi filtratsii i interpolyatsii. analiz”, Izvestiya Tomskogo politekhnicheskogo universiteta, 319:5 (2011), 5–9  elib
    3. Rozhkova S.V., Rozhkova O.V., “Informatsionnyi analiz v sovmestnoi zadache filtratsii i obobschennoi ekstrapolyatsii. analiz”, Izvestiya tomskogo politekhnicheskogo universiteta, 319:5 (2011), 9–14  elib
    4. Dëmin N.S., Rozhkova O.V., “Issledovanie effektivnosti diskretnogo kanala nablyudeniya s pamyatyu v zadache ekstrapolyatsii”, Izv. Tomskogo politekhnich. un-ta, 314:5 (2009), 11–15
    5. G. L. Bukhbinder, K. M. Chistilin, “Opisanie rossiiskogo fondovogo rynka v ramkakh modeli Gestona”, Matem. modelirovanie, 17:10 (2005), 31–38  mathnet  zmath
    6. I. Kolmanovsky, T.L. Maizenberg, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, 4250  crossref
    7. O. V. Shataev, “Minimization with respect to entropy in the problem of finding a martingale measure”, Russian Math. Surveys, 55:5 (2000), 1000–1002  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Carl J. G. Evertsz, Ralf Hendrych, Peter Singer, Heinz-Otto Peitgen, Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft, 1999, 400  crossref
    9. O. V. Shataev, “On a fair price of an option of European type”, Russian Math. Surveys, 53:6 (1998), 1367–1369  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. A. V. Melnikov, “Stochastic differential equations: singularity of coefficients, regression models, and stochastic approximation”, Russian Math. Surveys, 51:5 (1996), 819–909  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. L. A. Shepp, A. N. Shiryaev, “A new look at pricing of the “Russian Option””, Theory Probab. Appl., 39:1 (1994), 103–119  mathnet  mathnet  crossref  isi
    12. A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “Toward the theory of pricing of options of both European and American types. I. Discrete time”, Theory Probab. Appl., 39:1 (1994), 14–60  mathnet  mathnet  crossref  isi
    13. D. O. Kramkov, É. Mordecki, “Integral option”, Theory Probab. Appl., 39:1 (1994), 162–172  mathnet  mathnet  crossref  isi
    14. A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “Toward the theory of pricing of options of both European and American types. II. Continuous time”, Theory Probab. Appl., 39:1 (1994), 61–102  mathnet  mathnet  crossref  isi
    15. S. T. Rachev, L. Rüscheendorf, “Models for option prices”, Theory Probab. Appl., 39:1 (1994), 120–152  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1089
    Full-text PDF :401
    First page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025