Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 170, Number 3, Pages 457–467
DOI: https://doi.org/10.4213/tmf6778
(Mi tmf6778)
 

This article is cited in 14 scientific papers (total in 14 papers)

Critical indices as a consequence of Wiener quantization of thermodynamics

V. P. Maslov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We construct a family of perfect gases depending on the critical value of the compressibility factor Z for pure gases. We show that the critical indices of actual simple liquids, like many other thermodynamic effects, easily and naturally follow from the concept of Wiener quantization of modern thermodynamics.
Keywords: tunnel canonical operator, critical index, quantization of thermodynamics.
Received: 30.10.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 170, Issue 3, Pages 384–393
DOI: https://doi.org/10.1007/s11232-012-0037-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. P. Maslov, “Critical indices as a consequence of Wiener quantization of thermodynamics”, TMF, 170:3 (2012), 457–467; Theoret. and Math. Phys., 170:3 (2012), 384–393
Citation in format AMSBIB
\Bibitem{Mas12}
\by V.~P.~Maslov
\paper Critical indices as a~consequence of Wiener quantization of thermodynamics
\jour TMF
\yr 2012
\vol 170
\issue 3
\pages 457--467
\mathnet{http://mi.mathnet.ru/tmf6778}
\crossref{https://doi.org/10.4213/tmf6778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168852}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...170..384M}
\elib{https://elibrary.ru/item.asp?id=20732437}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 170
\issue 3
\pages 384--393
\crossref{https://doi.org/10.1007/s11232-012-0037-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303456600010}
\elib{https://elibrary.ru/item.asp?id=17983971}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860377626}
Linking options:
  • https://www.mathnet.ru/eng/tmf6778
  • https://doi.org/10.4213/tmf6778
  • https://www.mathnet.ru/eng/tmf/v170/i3/p457
  • This publication is cited in the following 14 articles:
    1. V. P. Maslov, “Jump in the Number of Collective Degrees of Freedom as a Phase Transition of the First Kind”, Math. Notes, 97:2 (2015), 230–242  mathnet  mathnet  crossref  isi  scopus
    2. B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. P. Maslov, “Effect of a measuring instrument in the “Bose condensate” of a classical gas in a phase transition and in experiments with negative pressure”, Theoret. and Math. Phys., 175:1 (2013), 526–558  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Maslov V.P., “The Role of Macroinstrument and Microinstrument and of Observable Quantities in the New Conception of Thermodynamics”, Russ. J. Math. Phys., 20:1 (2013), 68–101  crossref  mathscinet  zmath  isi  elib  scopus
    5. Maslov V.P., Maslova T.V., “Parastatistics and Phase Transition From a Cluster as a Fluctuation to a Cluster as a Distinguishable Object”, Russ. J. Math. Phys., 20:4 (2013), 468–475  crossref  mathscinet  zmath  isi  scopus
    6. V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas”, Math Notes, 94:5-6 (2013), 722  crossref
    7. V. P. Maslov, “The mathematical theory of classical thermodynamics”, Math Notes, 93:1-2 (2013), 102  crossref
    8. V. P. Maslov, “Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases”, Theoret. and Math. Phys., 172:3 (2012), 1289–1299  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    9. V. P. Maslov, T. V. Maslova, “Unbounded probability theory and its applications”, Theory Probab. Appl., 57:3 (2013), 444–467  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Maslov V.P., “New probability theory compatible with the new conception of modern thermodynamics. Economics and crisis of debts”, Russ. J. Math. Phys., 19:1 (2012), 63–100  crossref  mathscinet  zmath  isi  elib  scopus
    11. Maslov V.P., “Ideal gas/liquid transition as a generalization of the problem of “partitio numerorum””, Russ. J. Math. Phys., 19:4 (2012), 484–498  crossref  mathscinet  zmath  isi  elib  scopus
    12. Maslov V.P., Maslova T.V., “Probability theory for random variables with unboundedly growing values and its applications”, Russ. J. Math. Phys., 19:3 (2012), 324–339  crossref  mathscinet  zmath  isi  elib  scopus
    13. V. P. Maslov, T. V. Maslova, “Wiener quantization of economics as an analog of the quantization of thermodynamics”, Math Notes, 91:1-2 (2012), 81  crossref
    14. V. P. Maslov, “On the mathematical justification of experimental and computer physics”, Math Notes, 92:3-4 (2012), 577  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:894
    Full-text PDF :273
    References:141
    First page:75
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025