Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 289, Pages 242–303
DOI: https://doi.org/10.1134/S0371968515020156
(Mi tm3617)
 

This article is cited in 14 scientific papers (total in 14 papers)

Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Hyperbolic Ginzburg–Landau equations arise in gauge field theory as the Euler–Lagrange equations for the $(2+1)$-dimensional Abelian Higgs model. The moduli space of their static solutions, called vortices, was described by Taubes; however, little is known about the moduli space of dynamic solutions. Manton proposed to study dynamic solutions with small kinetic energy with the help of the adiabatic limit by introducing the “slow time” on solution trajectories. In this limit the dynamic solutions converge to geodesics in the space of vortices with respect to the metric generated by the kinetic energy functional. So, the original equations reduce to Euler geodesic equations, and by solving them one can describe the behavior of slowly moving dynamic solutions. It turns out that this procedure has a 4-dimensional analog. Namely, for the Seiberg–Witten equations on 4-dimensional symplectic manifolds it is possible to introduce an analog of the adiabatic limit. In this limit, solutions of the Seiberg–Witten equations reduce to families of vortices in normal planes to pseudoholomorphic curves, which can be considered as complex analogs of geodesics parameterized by “complex time.” The study of the adiabatic limit for the equations indicated in the title is the main content of this paper.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: January 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 289, Pages 227–285
DOI: https://doi.org/10.1134/S008154381504015X
Bibliographic databases:
Document Type: Article
UDC: 514.84
Language: Russian
Citation: A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 242–303; Proc. Steklov Inst. Math., 289 (2015), 227–285
Citation in format AMSBIB
\Bibitem{Ser15}
\by A.~G.~Sergeev
\paper Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 242--303
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3617}
\crossref{https://doi.org/10.1134/S0371968515020156}
\elib{https://elibrary.ru/item.asp?id=23738473}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 227--285
\crossref{https://doi.org/10.1134/S008154381504015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938870379}
Linking options:
  • https://www.mathnet.ru/eng/tm3617
  • https://doi.org/10.1134/S0371968515020156
  • https://www.mathnet.ru/eng/tm/v289/p242
  • This publication is cited in the following 14 articles:
    1. A. G. Sergeev, “$\text{Spin}^c$-structures and Seiberg–Witten equations”, Theoret. and Math. Phys., 216:2 (2023), 1119–1123  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Armen Sergeev, “Ginzburg–Landau equations and their generalizations”, Indag. Math., New Ser., 34:2 (2023), 294–305  mathnet  crossref  isi
    3. Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476  crossref
    4. Cork J., Kutluk E.S., Lechtenfeld O., Popov A.D., “A Low-Energy Limit of Yang-Mills Theory on de Sitter Space”, J. High Energy Phys., 2021, no. 9, 089  crossref  mathscinet  isi
    5. A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Theoret. and Math. Phys., 203:1 (2020), 561–568  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. A. G. Sergeev, “Adiabatic Limit in Yang-Mills Equations in R-4”, J. Sib. Fed. Univ.-Math. Phys., 12:4 (2019), 449–454  mathnet  crossref  mathscinet  isi
    7. T. A. Ivanova, O. Lechtenfeld, A. D. Popov, “Non-abelian SIGMA models from Yang–Mills theory compactified on a circle”, Phys. Lett. B, 781 (2018), 322–326  crossref  mathscinet  isi  scopus
    8. A. Sergeev, “Seiberg–Witten theory as a complex version of Abelian Higgs model”, Sci. China-Math., 60:6, SI (2017), 1089–1100  crossref  mathscinet  zmath  isi  scopus
    9. A. Sergeev, “Adiabatic limit in Abelian Higgs model with application to Seiberg–Witten equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 341–346  crossref  isi  scopus
    10. A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. O. Lechtenfeld, A. D. Popov, “Superstring limit of Yang–Mills theories”, Phys. Lett. B, 762 (2016), 309–314  crossref  zmath  isi  elib  scopus
    12. T. A. Ivanova, “Scattering of instantons, monopoles and vortices in higher dimensions”, Int. J. Geom. Methods Mod. Phys., 13:3 (2016), 1650032  crossref  mathscinet  zmath  isi  elib  scopus
    13. A. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Geometric Methods in Physics, Trends in Mathematics, eds. P. Kielanowski, S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer Int Publishing Ag, 2016, 321–330  crossref  mathscinet  zmath  isi  scopus
    14. A. Deser, O. Lechtenfeld, A. D. Popov, “Sigma-model limit of Yang–Mills instantons in higher dimensions”, Nuclear Physics B, 894 (2015), 361  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:571
    Full-text PDF :136
    References:91
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025