Abstract:
Hyperbolic Ginzburg–Landau equations arise in gauge field theory as the Euler–Lagrange equations for the $(2+1)$-dimensional Abelian Higgs model. The moduli space of their static solutions, called vortices, was described by Taubes; however, little is known about the moduli space of dynamic solutions. Manton proposed to study dynamic solutions with small kinetic energy with the help of the adiabatic limit by introducing the “slow time” on solution trajectories. In this limit the dynamic solutions converge to geodesics in the space of vortices with respect to the metric generated by the kinetic energy functional. So, the original equations reduce to Euler geodesic equations, and by solving them one can describe the behavior of slowly moving dynamic solutions. It turns out that this procedure has a 4-dimensional analog. Namely, for the Seiberg–Witten equations on 4-dimensional symplectic manifolds it is possible to introduce an analog of the adiabatic limit. In this limit, solutions of the Seiberg–Witten equations reduce to families of vortices in normal planes to pseudoholomorphic curves, which can be considered as complex analogs of geodesics parameterized by “complex time.” The study of the adiabatic limit for the equations indicated in the title is the main content of this paper.
Citation:
A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 242–303; Proc. Steklov Inst. Math., 289 (2015), 227–285
\Bibitem{Ser15}
\by A.~G.~Sergeev
\paper Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 242--303
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3617}
\crossref{https://doi.org/10.1134/S0371968515020156}
\elib{https://elibrary.ru/item.asp?id=23738473}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 227--285
\crossref{https://doi.org/10.1134/S008154381504015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938870379}
Linking options:
https://www.mathnet.ru/eng/tm3617
https://doi.org/10.1134/S0371968515020156
https://www.mathnet.ru/eng/tm/v289/p242
This publication is cited in the following 14 articles:
A. G. Sergeev, “$\text{Spin}^c$-structures and Seiberg–Witten equations”, Theoret. and Math. Phys., 216:2 (2023), 1119–1123
Armen Sergeev, “Ginzburg–Landau equations and their generalizations”, Indag. Math., New Ser., 34:2 (2023), 294–305
Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476
Cork J., Kutluk E.S., Lechtenfeld O., Popov A.D., “A Low-Energy Limit of Yang-Mills Theory on de Sitter Space”, J. High Energy Phys., 2021, no. 9, 089
A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Theoret. and Math. Phys., 203:1 (2020), 561–568
A. G. Sergeev, “Adiabatic Limit in Yang-Mills Equations in R-4”, J. Sib. Fed. Univ.-Math. Phys., 12:4 (2019), 449–454
T. A. Ivanova, O. Lechtenfeld, A. D. Popov, “Non-abelian SIGMA models from Yang–Mills theory compactified on a circle”, Phys. Lett. B, 781 (2018), 322–326
A. Sergeev, “Seiberg–Witten theory as a complex version of Abelian Higgs model”, Sci. China-Math., 60:6, SI (2017), 1089–1100
A. Sergeev, “Adiabatic limit in Abelian Higgs model with application to Seiberg–Witten equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 341–346
A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409
O. Lechtenfeld, A. D. Popov, “Superstring limit of Yang–Mills theories”, Phys. Lett. B, 762 (2016), 309–314
T. A. Ivanova, “Scattering of instantons, monopoles and vortices in higher dimensions”, Int. J. Geom. Methods Mod. Phys., 13:3 (2016), 1650032
A. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Geometric Methods in Physics, Trends in Mathematics, eds. P. Kielanowski, S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer Int Publishing Ag, 2016, 321–330
A. Deser, O. Lechtenfeld, A. D. Popov, “Sigma-model limit of Yang–Mills instantons in higher dimensions”, Nuclear Physics B, 894 (2015), 361