Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 2, Pages 245–250
DOI: https://doi.org/10.4213/tmf10405
(Mi tmf10405)
 

$\text{Spin}^c$-structures and Seiberg–Witten equations

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: The Seiberg–Witten equations, found at the end of the $20$th century, are one of the main discoveries in the topology and geometry of four-dimensional Riemannian manifolds. They are defined in terms of a $\text{Spin}^c$–structure that exists on any four-dimensional Riemannian manifold. Like the Yang–Mills equations, the Seiberg–Witten equations are the limit case of a more general supersymmetric Yang–Mills equations. However, unlike the conformally invariant Yang–Mills equations, the Seiberg–Witten equations are not scale invariant. Therefore, in order to obtain “useful information” from them, one must introduce a scale parameter $\lambda$ and pass to the limit as $\lambda\to\infty$. This is precisely the adiabatic limit studied in this paper.
Keywords: $\text{Spin}^c$-structures, Dirac operator, Seiberg–Witten equations, adiabatic limit.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation under grant no. 19-11-00316, https://rscf.ru/project/en/19-11-00316/.
Received: 18.11.2022
Revised: 18.11.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 2, Pages 1119–1123
DOI: https://doi.org/10.1134/S0040577923080044
Bibliographic databases:
Document Type: Article
PACS: 11.10.Lm
MSC: 58E15
Language: Russian
Citation: A. G. Sergeev, “$\text{Spin}^c$-structures and Seiberg–Witten equations”, TMF, 216:2 (2023), 245–250; Theoret. and Math. Phys., 216:2 (2023), 1119–1123
Citation in format AMSBIB
\Bibitem{Ser23}
\by A.~G.~Sergeev
\paper $\text{Spin}^c$-structures and Seiberg--Witten equations
\jour TMF
\yr 2023
\vol 216
\issue 2
\pages 245--250
\mathnet{http://mi.mathnet.ru/tmf10405}
\crossref{https://doi.org/10.4213/tmf10405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634811}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1119S}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 2
\pages 1119--1123
\crossref{https://doi.org/10.1134/S0040577923080044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169105859}
Linking options:
  • https://www.mathnet.ru/eng/tmf10405
  • https://doi.org/10.4213/tmf10405
  • https://www.mathnet.ru/eng/tmf/v216/i2/p245
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :30
    Russian version HTML:95
    References:36
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025