Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 2, Pages 251–270
DOI: https://doi.org/10.4213/tmf10378
(Mi tmf10378)
 

Cauchy problems related to integrable matrix hierarchies

G. F. Helminck

Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, The Netherlands
References:
Abstract: We discuss the solvability of two Cauchy problems in matrix pseudodifferential operators. The first is associated with a set of matrix pseudodifferential operators of negative order, a prominent example being the set of strict integral operator parts of products of a solution $(L,\{U_\alpha\})$ of the $\mathbf h[\partial]$-hierarchy, where $\mathbf h$ is a maximal commutative subalgebra of $gl_n(\mathbb{C})$. We show that it can be solved in the case of compatibility completeness of the adopted setting. The second Cauchy problem is slightly more general and relates to a set of matrix pseudodifferential operators of order zero or less. The key example here is the collection of integral operator parts of the different products of a solution $\{V_\alpha\}$ of the strict $\mathbf h[\partial]$-hierarchy. This system is solvable if two properties hold{:} the Cauchy solvability in dimension $n$ and the compatibility completeness. Both conditions are shown to hold in the formal power series setting.
Keywords: Cauchy problem, formal power series, integrable deformations, matrix pseudodifferential operators, $\mathbf h[\partial]$-hierarchy, strict $\mathbf h[\partial]$-hierarchy, zero-curvature equations.
Received: 27.09.2022
Revised: 14.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 2, Pages 1124–1141
DOI: https://doi.org/10.1134/S0040577923080056
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, “Cauchy problems related to integrable matrix hierarchies”, TMF, 216:2 (2023), 251–270; Theoret. and Math. Phys., 216:2 (2023), 1124–1141
Citation in format AMSBIB
\Bibitem{Hel23}
\by G.~F.~Helminck
\paper Cauchy problems related to integrable matrix hierarchies
\jour TMF
\yr 2023
\vol 216
\issue 2
\pages 251--270
\mathnet{http://mi.mathnet.ru/tmf10378}
\crossref{https://doi.org/10.4213/tmf10378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634812}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1124H}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 2
\pages 1124--1141
\crossref{https://doi.org/10.1134/S0040577923080056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169142632}
Linking options:
  • https://www.mathnet.ru/eng/tmf10378
  • https://doi.org/10.4213/tmf10378
  • https://www.mathnet.ru/eng/tmf/v216/i2/p251
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :14
    Russian version HTML:84
    References:40
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025