Abstract:
The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.
The first author was supported in part by the Russian Foundation for Basic Research under grant No. 13-01-12446-ofi-m2. The second author was supported by the Austrian Science Foundation (FWF) under grant P 26640-N25.
Citation:
S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 41–57; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 22–39
\Bibitem{AseVel14}
\by S.~M.~Aseev, V.~M.~Veliov
\paper Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 41--57
\mathnet{http://mi.mathnet.ru/timm1084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364416}
\elib{https://elibrary.ru/item.asp?id=23503111}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 22--39
\crossref{https://doi.org/10.1134/S0081543815090023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949486924}
Linking options:
https://www.mathnet.ru/eng/timm1084
https://www.mathnet.ru/eng/timm/v20/i3/p41
This publication is cited in the following 31 articles:
A. S. Aseev, S. P. Samsonov, “On the problem of optimal stimulation of demand”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S33–S47
S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430
S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851
S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546
Sérgio S. Rodrigues, “Remarks on finite and infinite time-horizon optimal control problems”, Systems & Control Letters, 172 (2023), 105441
Yury Yegorov, Franz Wirl, Dieter Grass, Markus Eigruber, Gustav Feichtinger, “On the matthew effect on individual investments in skills in arts, sports and science”, Journal of Economic Behavior & Organization, 196 (2022), 178
Katarzyna Kańska, Agnieszka Wiszniewska-Matyszkiel, “Dynamic Stackelberg duopoly with sticky prices and a myopic follower”, Oper Res Int J, 22:4 (2022), 4221
S. M. Aseev, “Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint”, Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S42–S54
Gustav Feichtinger, Dieter Grass, Peter M. Kort, Andrea Seidl, “On the Matthew effect in research careers”, Journal of Economic Dynamics and Control, 123 (2021), 104058
Dieter Grass, Gustav Feichtinger, Peter M. Kort, Andrea Seidl, “Why (some) abnormal problems are “normal””, Systems & Control Letters, 154 (2021), 104971
Alexander L. Bagno, Alexander M. Tarasyev, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2020, 2343, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2020, 2021, 040008
Anton Bondarev, “Games Without Winners: Catching-up with Asymmetric Spillovers”, Dyn Games Appl, 11:4 (2021), 670
Alexander L. Bagno, Alexander M. Tarasyev, “Numerical methods for construction of value functions in optimal control problems with infinite horizon”, IFAC-PapersOnLine, 53:2 (2020), 6730
Hélène Frankowska, Advances in Mathematical Economics, 23, Advances in Mathematical Economics, 2020, 41
S. M. Aseev, K. O. Besov, S. Yu. Kaniovski, “Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale”, Proc. Steklov Inst. Math., 304 (2019), 74–109
E. Augeraud-Veron, R. Boucekkine, V. M. Veliov, “Distributed optimal control models in environmental economics: a review”, Math. Model. Nat. Phenom., 14:1 (2019), UNSP 106
Anton O. Belyakov, “On necessary optimality conditions for Ramsey-type problems”, Ural Math. J., 5:1 (2019), 24–30
S. M. Aseev, V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 74:6 (2019), 963–1011
A. L. Bagno, A. M. Tarasyev, “Numerical methods for construction of value functions in optimal control problems on an infinite horizon”, Izv. Inst. Mat. Inform., 53 (2019), 15–26
P. Cannarsa, H. Frankowska, “Value function, relaxation, and transversality conditions in infinite horizon optimal control”, J. Math. Anal. Appl., 457:2 (2018), 1188–1217