Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 3, Pages 41–57 (Mi timm1084)  

This article is cited in 31 scientific papers (total in 31 papers)

Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions

S. M. Aseevab, V. M. Veliovc

a Steklov Mathematical Institute, Gubkina str. 8, Moscow, 119991, Russia
b International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
c Institute of Mathematical Methods in Economics, Vienna University of Technology, Argentinier str. 8/E105-4, A-1040 Vienna, Austria
References:
Abstract: The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.
Keywords: infinite horizon, Pontryagin maximum principle, transversality conditions, weak regularity assumptions.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12446-ofi-m2
Austrian Science Fund P 26640-N25
The first author was supported in part by the Russian Foundation for Basic Research under grant No. 13-01-12446-ofi-m2. The second author was supported by the Austrian Science Foundation (FWF) under grant P 26640-N25.
Received: 08.06.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 291, Issue 1, Pages 22–39
DOI: https://doi.org/10.1134/S0081543815090023
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: English
Citation: S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 41–57; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 22–39
Citation in format AMSBIB
\Bibitem{AseVel14}
\by S.~M.~Aseev, V.~M.~Veliov
\paper Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 41--57
\mathnet{http://mi.mathnet.ru/timm1084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364416}
\elib{https://elibrary.ru/item.asp?id=23503111}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 22--39
\crossref{https://doi.org/10.1134/S0081543815090023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949486924}
Linking options:
  • https://www.mathnet.ru/eng/timm1084
  • https://www.mathnet.ru/eng/timm/v20/i3/p41
  • This publication is cited in the following 31 articles:
    1. A. S. Aseev, S. P. Samsonov, “On the problem of optimal stimulation of demand”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S33–S47  mathnet  crossref  crossref  elib
    2. S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430  mathnet  crossref  crossref  elib
    3. S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851  mathnet  crossref  isi
    4. S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546  mathnet  crossref
    5. Sérgio S. Rodrigues, “Remarks on finite and infinite time-horizon optimal control problems”, Systems & Control Letters, 172 (2023), 105441  crossref
    6. Yury Yegorov, Franz Wirl, Dieter Grass, Markus Eigruber, Gustav Feichtinger, “On the matthew effect on individual investments in skills in arts, sports and science”, Journal of Economic Behavior & Organization, 196 (2022), 178  crossref
    7. Katarzyna Kańska, Agnieszka Wiszniewska-Matyszkiel, “Dynamic Stackelberg duopoly with sticky prices and a myopic follower”, Oper Res Int J, 22:4 (2022), 4221  crossref
    8. S. M. Aseev, “Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint”, Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S42–S54  mathnet  crossref  crossref  isi  elib
    9. Gustav Feichtinger, Dieter Grass, Peter M. Kort, Andrea Seidl, “On the Matthew effect in research careers”, Journal of Economic Dynamics and Control, 123 (2021), 104058  crossref
    10. Dieter Grass, Gustav Feichtinger, Peter M. Kort, Andrea Seidl, “Why (some) abnormal problems are “normal””, Systems & Control Letters, 154 (2021), 104971  crossref
    11. Alexander L. Bagno, Alexander M. Tarasyev, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2020, 2343, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2020, 2021, 040008  crossref
    12. Anton Bondarev, “Games Without Winners: Catching-up with Asymmetric Spillovers”, Dyn Games Appl, 11:4 (2021), 670  crossref
    13. Alexander L. Bagno, Alexander M. Tarasyev, “Numerical methods for construction of value functions in optimal control problems with infinite horizon”, IFAC-PapersOnLine, 53:2 (2020), 6730  crossref
    14. Hélène Frankowska, Advances in Mathematical Economics, 23, Advances in Mathematical Economics, 2020, 41  crossref
    15. S. M. Aseev, K. O. Besov, S. Yu. Kaniovski, “Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale”, Proc. Steklov Inst. Math., 304 (2019), 74–109  mathnet  crossref  crossref  mathscinet  isi  elib
    16. E. Augeraud-Veron, R. Boucekkine, V. M. Veliov, “Distributed optimal control models in environmental economics: a review”, Math. Model. Nat. Phenom., 14:1 (2019), UNSP 106  crossref  isi
    17. Anton O. Belyakov, “On necessary optimality conditions for Ramsey-type problems”, Ural Math. J., 5:1 (2019), 24–30  mathnet  crossref  mathscinet  zmath
    18. S. M. Aseev, V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 74:6 (2019), 963–1011  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. A. L. Bagno, A. M. Tarasyev, “Numerical methods for construction of value functions in optimal control problems on an infinite horizon”, Izv. Inst. Mat. Inform., 53 (2019), 15–26  crossref  mathscinet  isi  scopus
    20. P. Cannarsa, H. Frankowska, “Value function, relaxation, and transversality conditions in infinite horizon optimal control”, J. Math. Anal. Appl., 457:2 (2018), 1188–1217  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:682
    Full-text PDF :164
    References:78
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025