Abstract:
Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.
Citation:
S. M. Aseev, “Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 35–48; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S42–S54
\Bibitem{Ase21}
\by S.~M.~Aseev
\paper Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 35--48
\mathnet{http://mi.mathnet.ru/timm1812}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-35-48}
\elib{https://elibrary.ru/item.asp?id=45771400}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S42--S54
\crossref{https://doi.org/10.1134/S0081543821060043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108265572}
Linking options:
https://www.mathnet.ru/eng/timm1812
https://www.mathnet.ru/eng/timm/v27/i2/p35
This publication is cited in the following 3 articles:
S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430
S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546
S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851