Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 2, Pages 35–48
DOI: https://doi.org/10.21538/0134-4889-2021-27-2-35-48
(Mi timm1812)
 

This article is cited in 3 scientific papers (total in 3 papers)

Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint

S. M. Aseevabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
c International Institute for Applied Systems Analysis, Laxenburg
Full-text PDF (246 kB) Citations (3)
References:
Abstract: Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.
Keywords: optimal control, infinite horizon, Pontryagin maximum principle, asymptotic endpoint constraint, growth models, sustainable development.
Funding agency Grant number
Russian Science Foundation 19-11-00223
This work was supported by Russian Scientific Foundation, project 19-11-00223.
Received: 01.02.2021
Revised: 15.02.2021
Accepted: 22.02.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S42–S54
DOI: https://doi.org/10.1134/S0081543821060043
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49K15, 91B62
Language: Russian
Citation: S. M. Aseev, “Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 35–48; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S42–S54
Citation in format AMSBIB
\Bibitem{Ase21}
\by S.~M.~Aseev
\paper Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 35--48
\mathnet{http://mi.mathnet.ru/timm1812}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-35-48}
\elib{https://elibrary.ru/item.asp?id=45771400}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S42--S54
\crossref{https://doi.org/10.1134/S0081543821060043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108265572}
Linking options:
  • https://www.mathnet.ru/eng/timm1812
  • https://www.mathnet.ru/eng/timm/v27/i2/p35
  • This publication is cited in the following 3 articles:
    1. S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430  mathnet  crossref  crossref  elib
    2. S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546  mathnet  crossref
    3. S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :74
    References:60
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025