Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 6, Pages 963–1011
DOI: https://doi.org/10.1070/RM9915
(Mi rm9915)
 

This article is cited in 24 scientific papers (total in 24 papers)

Another view of the maximum principle for infinite-horizon optimal control problems in economics

S. M. Aseevabc, V. M. Veliovd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
c International Institute for Applied Systems Analysis, Laxenburg, Austria
d Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria
References:
Abstract: The authors present their recently developed complete version of the Pontryagin maximum principle for a class of infinite-horizon optimal control problems arising in economics. The main distinguishing feature of the result is that the adjoint variable is explicitly specified by a formula analogous to the Cauchy formula for solutions of linear differential systems. In certain situations this formula implies the ‘standard’ transversality conditions at infinity. Moreover, it can serve as an alternative to them. Examples demonstrate the advantages of the proposed version of the maximum principle. In particular, its applications are considered to Halkin's example, to Ramsey's optimal economic growth model, and to a basic model for optimal extraction of a non-renewable resource. Also presented is an economic interpretation of the characterization obtained for the adjoint variable.
Bibliography: 62 titles.
Keywords: optimal control, Pontryagin maximum principle, adjoint variables, transversality conditions, Ramsey model, optimal extraction of a non-renewable resource.
Funding agency Grant number
Russian Science Foundation 19-11-00223
Austrian Science Fund P31400-N32
The research of the first author was supported by the Russian Science Foundation under grant no. 19-11-00223. The research of the second author was supported by the Austrian Science Fund (FWF) under grant no. P31400-N32.
Received: 04.04.2019
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: Primary 49K15; Secondary 91B62
Language: English
Original paper language: Russian
Citation: S. M. Aseev, V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 74:6 (2019), 963–1011
Citation in format AMSBIB
\Bibitem{AseVel19}
\by S.~M.~Aseev, V.~M.~Veliov
\paper Another view of the maximum principle for infinite-horizon optimal control problems in economics
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 6
\pages 963--1011
\mathnet{http://mi.mathnet.ru/eng/rm9915}
\crossref{https://doi.org/10.1070/RM9915}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036769}
\zmath{https://zbmath.org/?q=an:1480.49022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..963A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000518760400001}
\elib{https://elibrary.ru/item.asp?id=43765618}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087352762}
Linking options:
  • https://www.mathnet.ru/eng/rm9915
  • https://doi.org/10.1070/RM9915
  • https://www.mathnet.ru/eng/rm/v74/i6/p3
  • This publication is cited in the following 24 articles:
    1. José E. Márquez-Prado, Onésimo Hernández-Lerma, Héctor Jasso-Fuentes, “Myopic optimal strategies for a class of continuous-time deterministic and stochastic control problems”, Systems & Control Letters, 196 (2025), 106016  crossref
    2. José E. Márquez–Prado, Onésimo Hernández–Lerma, “Linear–State Control Problems and Differential Games: Deterministic and Stochastic Systems”, J Optim Theory Appl, 205:2 (2025)  crossref
    3. Federico Ferraccioli, Nikolaos I. Stilianakis, Vladimir M. Veliov, “A spatial epidemic model with contact and mobility restrictions”, Mathematical and Computer Modelling of Dynamical Systems, 30:1 (2024), 284  crossref  mathscinet
    4. A. A. Bazulkina, L. I. Rodina, “Teorema sravneniya dlya sistem differentsialnykh uravnenii i ee primenenie dlya otsenki srednei vremennoi vygody ot sbora resursa”, Izv. IMI UdGU, 63 (2024), 3–17  mathnet  crossref
    5. Tobias Ehring, Bernard Haasdonk, “Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems”, Adv Comput Math, 50:3 (2024)  crossref
    6. A. A. Davydov, A. S. Platov, D. V. Tunitskii, “Suschestvovanie optimalnogo statsionarnogo resheniya v KPP-modeli pri nelokalnoi konkurentsii”, Tr. IMM UrO RAN, 30, no. 3, 2024, 113–121  mathnet  crossref  elib
    7. D. V. Khlopin, “Ob odnoi sopryazhennoi traektorii v zadachakh upravleniya na beskonechnom promezhutke”, Tr. IMM UrO RAN, 30, no. 3, 2024, 274–292  mathnet  crossref  elib
    8. D. V. Khlopin, “On One Adjoint Trajectory in Infinite-Horizon Control Problems”, Proc. Steklov Inst. Math., 327:S1 (2024), S155  crossref
    9. A. A. Davydov, A. S. Platov, D. V. Tunitsky, “Existence of an Optimal Stationary Solution in the KPP Model under Nonlocal Competition”, Proc. Steklov Inst. Math., 327:S1 (2024), S66  crossref
    10. S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci., 270:4 (2023), 531  crossref  mathscinet
    11. A. O. Belyakov, “Optimal accumulation of factors with linear-homogeneous production functions on infinite time horizon”, J. Math. Sci., 269:6 (2023), 755  crossref  mathscinet
    12. Yu. Zheng, J. Shi, “The maximum principle for discounted optimal control of partially observed forward-backward stochastic systems with jumps on infinite horizon”, ESAIM: COCV, 29 (2023), 34, 49 pp.  crossref  mathscinet
    13. D. Khlopin, “Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions”, Set-Valued Var. Anal., 31:1 (2023), 8  crossref  mathscinet
    14. S. M. Aseev, “Conditional cost function and necessary optimality conditions for infinite horizon optimal control problems”, Dokl. Math., 108:3 (2023), 425–430  mathnet  crossref  crossref  elib
    15. S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851  mathnet  crossref  isi
    16. A. Shananin, N. Trusov, “The group behaviour modelling of workers in the labor market”, Russian Journal of Numerical Analysis and Mathematical Modelling, 38:4 (2023), 219  crossref  mathscinet  zmath
    17. N. V. Trusov, A. A. Shananin, “Mathematical model of human capital dynamics”, Comput. Math. Math. Phys., 63:10 (2023), 1942–1954  mathnet  mathnet  crossref  crossref  mathscinet  zmath
    18. A. Davydov, E. Vinnikov, “Optimal cyclic dynamic of distributed population under permanent and impulse harvesting”, Dynamic Control and Optimization, Springer Proceedings in Mathematics & Statistics, 407, 2022, 101–112  crossref  mathscinet
    19. L. Lehmann, “Hamilton’s rule, the evolution of behavior rules and the wizardry of control theory”, Journal of Theoretical Biology, 555 (2022), 111282  crossref  mathscinet
    20. T. V. Bogachev, S. N. Popova, “On Optimization of Tax Functions”, Math. Notes, 109:2 (2021), 163–170  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1048
    Russian version PDF:187
    English version PDF:66
    References:116
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025