Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 3, Pages 113–121
DOI: https://doi.org/10.21538/0134-4889-2024-30-3-113-121
(Mi timm2108)
 

Existence of an optimal stationary solution in the KPP model under nonlocal competition

A. A. Davydovab, A. S. Platovc, D. V. Tunitskyd

a Lomonosov Moscow State University
b International Institute for Applied Systems Analysis, Laxenburg
c National University of Science and Technology «MISIS», Moscow
d V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
References:
Abstract: We consider a resource distributed on a compact closed connected manifold without edge, for example, on a two-dimensional sphere representing the Earth surface. The dynamics of the resource is governed by a model of the Fisher–Kolmogorov–Petrovsky–Piskunov type with coefficients in the reaction term depending on the total amount of the resource, which makes the model equation nonlocal. Under natural assumptions about the model parameters, it is shown that there is at most one nontrivial nonnegative stationary distribution of the resource. Moreover, in the case of constant distributed resource harvesting, there is a harvesting strategy under which such a distribution maximizes the time-averaged resource harvesting over the stationary states.
Keywords: KPP model, stationary solution, time-averaged harvesting, optimal strategy.
Received: 24.03.2024
Revised: 13.06.2024
Accepted: 17.06.2024
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: A. A. Davydov, A. S. Platov, D. V. Tunitsky, “Existence of an optimal stationary solution in the KPP model under nonlocal competition”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 3, 2024, 113–121
Citation in format AMSBIB
\Bibitem{DavPlaTun24}
\by A.~A.~Davydov, A.~S.~Platov, D.~V.~Tunitsky
\paper Existence of an optimal stationary solution in the KPP model under nonlocal competition
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 3
\pages 113--121
\mathnet{http://mi.mathnet.ru/timm2108}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-3-113-121}
\elib{https://elibrary.ru/item.asp?id=69053412}
\edn{https://elibrary.ru/zlhwyt}
Linking options:
  • https://www.mathnet.ru/eng/timm2108
  • https://www.mathnet.ru/eng/timm/v30/i3/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :1
    References:16
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025