Processing math: 100%
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 6, Pages 1240–1267
DOI: https://doi.org/10.17377/smzh.2018.59.603
(Mi smj3041)
 

This article is cited in 12 scientific papers (total in 12 papers)

Differentiability of mappings of the Sobolev space Wn11 with conditions on the distortion function

S. K. Vodopyanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We define two scales of the mappings that depend on two real parameters p and q, with n1qp<, as well as a weight function θ. The case q=p=n and θ1 yields the well-known mappings with bounded distortion. The mappings of a two-index scale are applied to solve a series of problems of global analysis and applications. The main result of the article is the a.e. differentiability of mappings of two-index scales.
Keywords: quasiconformal analysis, Sobolev space, capacity estimate, differentiability, Liouville theorem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3087.2017/4.6
Russian Foundation for Basic Research 17-01-00801-а
The author's research was supported in Section 2 by the Ministry of Science and Education of the Russian Federation (Grant 1.3087.2017/4.6) and in Sections 3 and 4 by the Russian Foundation for Basic Research (Grant 17-01-00801).
Received: 11.07.2018
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 6, Pages 983–1005
DOI: https://doi.org/10.1134/S0037446618060034
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
MSC: 35R30
Language: Russian
Citation: S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space Wn11 with conditions on the distortion function”, Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267; Siberian Math. J., 59:6 (2018), 983–1005
Citation in format AMSBIB
\Bibitem{Vod18}
\by S.~K.~Vodopyanov
\paper Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 6
\pages 1240--1267
\mathnet{http://mi.mathnet.ru/smj3041}
\crossref{https://doi.org/10.17377/smzh.2018.59.603}
\elib{https://elibrary.ru/item.asp?id=38644835}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 6
\pages 983--1005
\crossref{https://doi.org/10.1134/S0037446618060034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454441000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057482206}
Linking options:
  • https://www.mathnet.ru/eng/smj3041
  • https://www.mathnet.ru/eng/smj/v59/i6/p1240
  • This publication is cited in the following 12 articles:
    1. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261  mathnet  crossref  crossref
    4. S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69  mathnet  crossref  mathscinet
    5. S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491  crossref
    6. S. K. Vodopyanov, “Moduli inequalities for W1n1,loc-mappings with weighted bounded (q,p)-distortion”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1037–1072  crossref  mathscinet  isi  scopus
    7. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    8. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  crossref  crossref  isi  elib
    9. S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038  mathnet  crossref  crossref  isi  elib
    10. Ruslan Salimov, Mariia Stefanchuk, “On the local properties of solutions of the nonlinear Beltrami equation”, UMB, 17:1 (2020), 77  crossref
    11. A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differ. Equ., 59:1 (2019), 17  crossref  mathscinet  isi  scopus
    12. S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Siberian Math. J., 59:5 (2018), 805–834  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :111
    References:73
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025