Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 5, Pages 1020–1056
DOI: https://doi.org/10.17377/smzh.2018.59.507
(Mi smj3027)
 

This article is cited in 12 scientific papers (total in 12 papers)

Basics of the quasiconformal analysis of a two-index scale of spatial mappings

S. K. Vodopyanovabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Peoples' Friendship University of Russia, Moscow, Russia
References:
Abstract: We define a scale of mappings that depends on two real parameters p and q, n1qp<, and a weight function θ In the case of q=p=n, θ1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.
Keywords: quasiconformal analysis, Sobolev space, capacity estimate, theorem on removable singularities.
Funding agency Grant number
Russian Science Foundation 16-41-02004
The author was supported by the Russian Science Foundation (Grant 16-41-02004).
Received: 28.06.2018
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 5, Pages 805–834
DOI: https://doi.org/10.1134/S0037446618050075
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
Language: Russian
Citation: S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056; Siberian Math. J., 59:5 (2018), 805–834
Citation in format AMSBIB
\Bibitem{Vod18}
\by S.~K.~Vodopyanov
\paper Basics of the quasiconformal analysis of a~two-index scale of spatial mappings
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1020--1056
\mathnet{http://mi.mathnet.ru/smj3027}
\crossref{https://doi.org/10.17377/smzh.2018.59.507}
\elib{https://elibrary.ru/item.asp?id=38619061}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 805--834
\crossref{https://doi.org/10.1134/S0037446618050075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452230400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057505463}
Linking options:
  • https://www.mathnet.ru/eng/smj3027
  • https://www.mathnet.ru/eng/smj/v59/i5/p1020
  • This publication is cited in the following 12 articles:
    1. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261  mathnet  crossref  crossref
    4. S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69  mathnet  crossref  mathscinet
    5. S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491  crossref
    6. S. K. Vodopyanov, “Moduli inequalities for W1n1,loc-mappings with weighted bounded (q,p)-distortion”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1037–1072  crossref  mathscinet  isi  scopus
    7. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    8. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  crossref  crossref  isi  elib
    9. N. A. Evseev, A. V. Menovschikov, “On changing variables in Lp-spaces with distributed-microstructure”, Russian Math. (Iz. VUZ), 64:3 (2020), 82–86  mathnet  crossref  crossref  isi
    10. S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038  mathnet  crossref  crossref  isi  elib
    11. A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differ. Equ., 59:1 (2019), 17  crossref  mathscinet  isi  scopus
    12. S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space W1n1 with conditions on the distortion function”, Siberian Math. J., 59:6 (2018), 983–1005  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :91
    References:59
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025