Abstract:
We define a scale of mappings that depends on two real parameters p and q, n−1≤q≤p<∞, and a weight function θ In the case of q=p=n, θ≡1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.
Citation:
S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056; Siberian Math. J., 59:5 (2018), 805–834
\Bibitem{Vod18}
\by S.~K.~Vodopyanov
\paper Basics of the quasiconformal analysis of a~two-index scale of spatial mappings
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1020--1056
\mathnet{http://mi.mathnet.ru/smj3027}
\crossref{https://doi.org/10.17377/smzh.2018.59.507}
\elib{https://elibrary.ru/item.asp?id=38619061}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 805--834
\crossref{https://doi.org/10.1134/S0037446618050075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452230400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057505463}
Linking options:
https://www.mathnet.ru/eng/smj3027
https://www.mathnet.ru/eng/smj/v59/i5/p1020
This publication is cited in the following 12 articles:
Izv. Math., 87:4 (2023), 683–725
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261
S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69
S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491
S. K. Vodopyanov, “Moduli inequalities for W1n−1,loc-mappings with weighted bounded (q,p)-distortion”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1037–1072
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025
N. A. Evseev, A. V. Menovschikov, “On changing variables in Lp-spaces with distributed-microstructure”, Russian Math. (Iz. VUZ), 64:3 (2020), 82–86
S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038
A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differ. Equ., 59:1 (2019), 17
S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space W1n−1 with conditions on the distortion function”, Siberian Math. J., 59:6 (2018), 983–1005