Abstract:
We prove that each homeomorphism φ:D→D′ of Euclidean domains in Rn, n≥2, belonging to the Sobolev class W1p,loc(D), where p∈[1,∞), and having finite distortion induces a bounded composition operator from the weighted Sobolev space L1p(D′;ω) into L1p(D) for some weight function ω:D′→(0,∞). This implies that in the cases p>n−1 and n≥3 as well as p≥1 and n≥2 the inverse φ−1:D′→D belongs to the Sobolev class W11,loc(D′), has finite distortion, and is differentiable \CalHn-almost everywhere in D′. We apply this result to \CalQq,p-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of \CalQq,p-homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
The author was supported by the Mathematical Center in Akademgorodok
and the Ministry of Science and Higher Education of the Russian Federation
(Contract 075–15–2019–1613).
Citation:
S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299; Siberian Math. J., 61:6 (2020), 1002–1038
\Bibitem{Vod20}
\by S.~K.~Vodopyanov
\paper The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1257--1299
\mathnet{http://mi.mathnet.ru/smj6051}
\crossref{https://doi.org/10.33048/smzh.2020.61.605}
\elib{https://elibrary.ru/item.asp?id=44994844}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 1002--1038
\crossref{https://doi.org/10.1134/S0037446620060051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099664439}
Linking options:
https://www.mathnet.ru/eng/smj6051
https://www.mathnet.ru/eng/smj/v61/i6/p1257
This publication is cited in the following 16 articles:
S. K. Vodopyanov, S. V. Pavlov, “Funktsionalnye svoistva predelov sobolevskikh gomeomorfizmov s integriruemym iskazheniem”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 215–236
A. O. Tomilov, “An estimate for the measure of the preimage of a ball under $Q_{q,p}$-homeomorphisms”, Siberian Math. J., 65:6 (2024), 1395–1401
S. K. Vodopyanov, S. V. Pavlov, “Functional Properties of Limits of Sobolev Homeomorphisms with Integrable Distortion”, J Math Sci, 2024
Izv. Math., 87:4 (2023), 683–725
S. K. Vodopyanov, “On the Gehring type condition and properties of mappings”, Vladikavk. matem. zhurn., 25:3 (2023), 51–58
S. G. Basalaev, S. K. Vodopyanov, “Nepreryvnost po Gëlderu sledov funktsii klassa Soboleva na giperpoverkhnostyakh grupp Karno i $\mathcal{P}$-differentsiruemost sobolevskikh otobrazhenii”, Sib. matem. zhurn., 64:4 (2023), 700–719
D. A. Sboev, “Prostranstva $BV$ i ogranichennye operatory kompozitsii $BV$-funktsii na gruppakh Karno”, Sib. matem. zhurn., 64:6 (2023), 1304–1326
E. A. Shcherbakov, M. E. Shcherbakov, “Equilibrium Droplet Shapes and Almost Global Semi-Geodesic Parametrization of Surfaces”, Lobachevskii J Math, 44:4 (2023), 1486
S. G. Basalaev, S. K. Vodopyanov, “Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the $ \mathcal{P} $-Differentiability of Sobolev Mappings”, Sib Math J, 64:4 (2023), 819
D. A. Sboev, “$ BV $-Spaces and the Bounded Composition Operators of $ BV $-Functions on Carnot Groups”, Sib Math J, 64:6 (2023), 1420
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261
S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69
S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025