Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 6, Pages 1257–1299
DOI: https://doi.org/10.33048/smzh.2020.61.605
(Mi smj6051)
 

This article is cited in 16 scientific papers (total in 16 papers)

The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms

S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We prove that each homeomorphism φ:DD of Euclidean domains in Rn, n2, belonging to the Sobolev class W1p,loc(D), where p[1,), and having finite distortion induces a bounded composition operator from the weighted Sobolev space L1p(D;ω) into L1p(D) for some weight function ω:D(0,). This implies that in the cases p>n1 and n3 as well as p1 and n2 the inverse φ1:DD belongs to the Sobolev class W11,loc(D), has finite distortion, and is differentiable \CalHn-almost everywhere in D. We apply this result to \CalQq,p-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of \CalQq,p-homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
Keywords: quasiconformal analysis, Sobolev space, composition operator, capacity estimate.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
The author was supported by the Mathematical Center in Akademgorodok and the Ministry of Science and Higher Education of the Russian Federation (Contract 075–15–2019–1613).
Received: 18.07.2020
Revised: 26.09.2020
Accepted: 09.10.2020
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 6, Pages 1002–1038
DOI: https://doi.org/10.1134/S0037446620060051
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
MSC: 35R30
Language: Russian
Citation: S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299; Siberian Math. J., 61:6 (2020), 1002–1038
Citation in format AMSBIB
\Bibitem{Vod20}
\by S.~K.~Vodopyanov
\paper The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1257--1299
\mathnet{http://mi.mathnet.ru/smj6051}
\crossref{https://doi.org/10.33048/smzh.2020.61.605}
\elib{https://elibrary.ru/item.asp?id=44994844}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 1002--1038
\crossref{https://doi.org/10.1134/S0037446620060051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099664439}
Linking options:
  • https://www.mathnet.ru/eng/smj6051
  • https://www.mathnet.ru/eng/smj/v61/i6/p1257
  • This publication is cited in the following 16 articles:
    1. S. K. Vodopyanov, S. V. Pavlov, “Funktsionalnye svoistva predelov sobolevskikh gomeomorfizmov s integriruemym iskazheniem”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 215–236  mathnet  crossref
    2. A. O. Tomilov, “An estimate for the measure of the preimage of a ball under $Q_{q,p}$-homeomorphisms”, Siberian Math. J., 65:6 (2024), 1395–1401  mathnet  crossref  crossref
    3. S. K. Vodopyanov, S. V. Pavlov, “Functional Properties of Limits of Sobolev Homeomorphisms with Integrable Distortion”, J Math Sci, 2024  crossref
    4. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. S. K. Vodopyanov, “On the Gehring type condition and properties of mappings”, Vladikavk. matem. zhurn., 25:3 (2023), 51–58  mathnet  crossref
    6. S. G. Basalaev, S. K. Vodopyanov, “Nepreryvnost po Gëlderu sledov funktsii klassa Soboleva na giperpoverkhnostyakh grupp Karno i $\mathcal{P}$-differentsiruemost sobolevskikh otobrazhenii”, Sib. matem. zhurn., 64:4 (2023), 700–719  mathnet  crossref
    7. D. A. Sboev, “Prostranstva $BV$ i ogranichennye operatory kompozitsii $BV$-funktsii na gruppakh Karno”, Sib. matem. zhurn., 64:6 (2023), 1304–1326  mathnet  crossref
    8. E. A. Shcherbakov, M. E. Shcherbakov, “Equilibrium Droplet Shapes and Almost Global Semi-Geodesic Parametrization of Surfaces”, Lobachevskii J Math, 44:4 (2023), 1486  crossref
    9. S. G. Basalaev, S. K. Vodopyanov, “Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the $ \mathcal{P} $-Differentiability of Sobolev Mappings”, Sib Math J, 64:4 (2023), 819  crossref
    10. D. A. Sboev, “$ BV $-Spaces and the Bounded Composition Operators of $ BV $-Functions on Carnot Groups”, Sib Math J, 64:6 (2023), 1420  crossref
    11. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261  mathnet  crossref  crossref
    13. S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69  mathnet  crossref  mathscinet
    14. S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491  crossref
    15. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    16. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :160
    References:62
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025