Abstract:
Let ωω be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set P⊂R2∖{0}, the set Tω(P) of nonzero values of ω on P×P, if nonempty, has cardinality Ω(N96/137).
In the special case when P=A×A, where A is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form ω:
|AA+AA|=Ω(|A|19/12)and|AA−AA|=Ω(|A|49/32log3/32|A|).
These estimates improve their basic prototypes Ω(N2/3) and Ω(|A|3/2), which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.
\Bibitem{IosRocRud18}
\by A.~Iosevich, O.~Roche-Newton, M.~Rudnev
\paper On discrete values of bilinear forms
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1482--1497
\mathnet{http://mi.mathnet.ru/eng/sm8966}
\crossref{https://doi.org/10.1070/SM8966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859410}
\zmath{https://zbmath.org/?q=an:1406.52034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300004}
\elib{https://elibrary.ru/item.asp?id=35601304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059157642}
Linking options:
https://www.mathnet.ru/eng/sm8966
https://doi.org/10.1070/SM8966
https://www.mathnet.ru/eng/sm/v209/i10/p71
This publication is cited in the following 4 articles:
M. Rudnev, S. Stevens, “An update on the sum-product problem”, Math. Proc. Camb. Phil. Soc., 173:2 (2022), 411–430
M. Rudnev, G. Shakan, I. D. Shkredov, “Stronger sum-product inequalities for small sets”, Proc. Amer. Math. Soc., 148:4 (2020), 1467–1479
B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New results on sum-product type growth over fields”, Mathematika, 65:3 (2019), 588–642
B. Murphy, G. Petridis, “Products of difference over arbitrary finite fields”, Discrete Anal., 2018, 18, 42 pp.