Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 10, Pages 1482–1497
DOI: https://doi.org/10.1070/SM8966
(Mi sm8966)
 

This article is cited in 4 scientific papers (total in 4 papers)

On discrete values of bilinear forms

A. Iosevicha, O. Roche-Newtonb, M. Rudnevc

a Department of Mathematics, University of Rochester, Rochester, NY, USA
b Johannes Kepler University, Linz, Austria
c Department of Mathematics, University of Bristol, Bristol, UK
References:
Abstract: Let ωω be a nondegenerate skew-symmetric bilinear form in the real plane. We prove that for finite a point set PR2{0}, the set Tω(P) of nonzero values of ω on P×P, if nonempty, has cardinality Ω(N96/137).
In the special case when P=A×A, where A is a set of at least two reals, we establish the following sum-product type estimates, corresponding to the symmetric and skew-symmetric form ω:
|AA+AA|=Ω(|A|19/12)and|AAAA|=Ω(|A|49/32log3/32|A|).
These estimates improve their basic prototypes Ω(N2/3) and Ω(|A|3/2), which readily follow from the Szemerédi-Trotter theorem.
Bibliography: 28 titles.
Keywords: Erdős problems, sum-product estimates, cross-ratio.
Received: 10.05.2017 and 05.08.2017
Bibliographic databases:
Document Type: Article
UDC: 519.1+514.17
MSC: Primary 52C10; Secondary 11B75
Language: English
Original paper language: Russian
Citation: A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497
Citation in format AMSBIB
\Bibitem{IosRocRud18}
\by A.~Iosevich, O.~Roche-Newton, M.~Rudnev
\paper On discrete values of bilinear forms
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1482--1497
\mathnet{http://mi.mathnet.ru/eng/sm8966}
\crossref{https://doi.org/10.1070/SM8966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859410}
\zmath{https://zbmath.org/?q=an:1406.52034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300004}
\elib{https://elibrary.ru/item.asp?id=35601304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059157642}
Linking options:
  • https://www.mathnet.ru/eng/sm8966
  • https://doi.org/10.1070/SM8966
  • https://www.mathnet.ru/eng/sm/v209/i10/p71
  • This publication is cited in the following 4 articles:
    1. M. Rudnev, S. Stevens, “An update on the sum-product problem”, Math. Proc. Camb. Phil. Soc., 173:2 (2022), 411–430  crossref  mathscinet
    2. M. Rudnev, G. Shakan, I. D. Shkredov, “Stronger sum-product inequalities for small sets”, Proc. Amer. Math. Soc., 148:4 (2020), 1467–1479  crossref  mathscinet  zmath  isi
    3. B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New results on sum-product type growth over fields”, Mathematika, 65:3 (2019), 588–642  crossref  mathscinet  zmath  isi
    4. B. Murphy, G. Petridis, “Products of difference over arbitrary finite fields”, Discrete Anal., 2018, 18, 42 pp.  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:382
    Russian version PDF:41
    English version PDF:15
    References:55
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025