Abstract:
A proof is presented that an arbitrary complemented subspace of a Köthe nuclear space from class $(d_1)$ has a basis, provided that the relevant Köthe matrix is regular in the sense of Dragilev. It is also shown that each such subspace must have a basis that is quasi-equivalent to a part of the canonical unit-vector basis.
Bibliography: 21 titles.
Citation:
A. K. Dronov, V. M. Kaplitskii, “On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$”, Sb. Math., 209:10 (2018), 1463–1481
\Bibitem{DroKap18}
\by A.~K.~Dronov, V.~M.~Kaplitskii
\paper On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space from class~$(d_1)$
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1463--1481
\mathnet{http://mi.mathnet.ru/eng/sm8843}
\crossref{https://doi.org/10.1070/SM8843}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859409}
\zmath{https://zbmath.org/?q=an:1425.46003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300003}
\elib{https://elibrary.ru/item.asp?id=35601301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059198218}
Linking options:
https://www.mathnet.ru/eng/sm8843
https://doi.org/10.1070/SM8843
https://www.mathnet.ru/eng/sm/v209/i10/p50
This publication is cited in the following 1 articles:
A. Debrouwere, “Sequence space representations for spaces of entire functions with rapid decay on strips”, J. Math. Anal. Appl., 497:1 (2021), 124872