Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 3, Pages 424–458
DOI: https://doi.org/10.1070/SM2012v203n03ABEH004229
(Mi sm7837)
 

This article is cited in 9 scientific papers (total in 10 papers)

Representations of S admissible with respect to Young subgroups

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
References:
Abstract: Let N be the set of positive integers and S the set of finite permutations of N. For a partition Π of the set N into infinite parts A1,A2, we denote by SΠ the subgroup of S whose elements leave invariant each of the sets Aj. We set S(N)={sS:s(i)=i for any i=1,2,,N}. A factor representation T of the group S is said to be Π-admissible if for some N it contains a nontrivial identity subrepresentation of the subgroup SΠS(N). In the paper, we obtain a classification of the Π-admissible factor representations of S.
Bibliography: 14 titles.
Keywords: factor representation, Young subgroup, Π-admissible representation.
Received: 28.12.2010 and 12.05.2011
Bibliographic databases:
Document Type: Article
UDC: 517.986
MSC: Primary 20C32; Secondary 20B30
Language: English
Original paper language: Russian
Citation: N. I. Nessonov, “Representations of S admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458
Citation in format AMSBIB
\Bibitem{Nes12}
\by N.~I.~Nessonov
\paper Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
\jour Sb. Math.
\yr 2012
\vol 203
\issue 3
\pages 424--458
\mathnet{http://mi.mathnet.ru/eng/sm7837}
\crossref{https://doi.org/10.1070/SM2012v203n03ABEH004229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961735}
\zmath{https://zbmath.org/?q=an:1248.20013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..424N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304048700006}
\elib{https://elibrary.ru/item.asp?id=19066454}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861323692}
Linking options:
  • https://www.mathnet.ru/eng/sm7837
  • https://doi.org/10.1070/SM2012v203n03ABEH004229
  • https://www.mathnet.ru/eng/sm/v203/i3/p127
  • This publication is cited in the following 10 articles:
    1. Yu. A. Neretin, “On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups”, Math. Notes, 114:4 (2023), 583–592  mathnet  crossref  crossref
    2. Neretin Yu.A., “On Spherical Unitary Representations of Groups of Spheromorphisms of Bruhat-Tits Trees”, Group. Geom. Dyn., 15:3 (2021), 801–824  crossref  mathscinet  isi  scopus
    3. Neretin Yu.A., “Groups Gl(Infinity) Over Finite Fields and Multiplications of Double Cosets”, J. Algebra, 585 (2021), 370–421  crossref  mathscinet  isi
    4. A. M. Borodin, Aleksandr I. Bufetov, Aleksei I. Bufetov, A. M. Vershik, V. E. Gorin, A. I. Molev, V. F. Molchanov, R. S. Ismagilov, A. A. Kirillov, M. L. Nazarov, Yu. A. Neretin, N. I. Nessonov, A. Yu. Okounkov, L. A. Petrov, S. M. Khoroshkin, “Grigori Iosifovich Olshanski (on his 70th birthday)”, Russian Math. Surveys, 74:3 (2019), 555–577  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  mathnet  crossref  crossref  isi  scopus
    6. V. E. Slyusarchuk, “Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation dx(t)dt=f(x(t)+h1(t))+h2(t)”, Sb. Math., 208:2 (2017), 255–268  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. J. Math. Sci. (N. Y.), 232:2 (2018), 138–156  mathnet  crossref
    8. Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439  mathnet  mathnet  crossref  crossref  isi  scopus
    10. L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:547
    Russian version PDF:206
    English version PDF:20
    References:68
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025