Abstract:
Let N be the set of positive integers and S∞ the set of finite permutations of N. For a partition Π of the set N into infinite parts A1,A2,… we denote by SΠ the subgroup of S∞ whose elements leave invariant each of the sets Aj. We set S(N)∞={s∈S∞:s(i)=ifor anyi=1,2,…,N}. A factor representation T of the group S∞ is said to be Π-admissible if for some N it contains a nontrivial identity subrepresentation of the subgroup
SΠ∩S(N)∞. In the paper, we obtain a classification of the Π-admissible factor representations of S∞.
Bibliography: 14 titles.
Keywords:
factor representation, Young subgroup, Π-admissible representation.
\Bibitem{Nes12}
\by N.~I.~Nessonov
\paper Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
\jour Sb. Math.
\yr 2012
\vol 203
\issue 3
\pages 424--458
\mathnet{http://mi.mathnet.ru/eng/sm7837}
\crossref{https://doi.org/10.1070/SM2012v203n03ABEH004229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961735}
\zmath{https://zbmath.org/?q=an:1248.20013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..424N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304048700006}
\elib{https://elibrary.ru/item.asp?id=19066454}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861323692}
Linking options:
https://www.mathnet.ru/eng/sm7837
https://doi.org/10.1070/SM2012v203n03ABEH004229
https://www.mathnet.ru/eng/sm/v203/i3/p127
This publication is cited in the following 10 articles:
Yu. A. Neretin, “On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups”, Math. Notes, 114:4 (2023), 583–592
Neretin Yu.A., “On Spherical Unitary Representations of Groups of Spheromorphisms of Bruhat-Tits Trees”, Group. Geom. Dyn., 15:3 (2021), 801–824
Neretin Yu.A., “Groups Gl(Infinity) Over Finite Fields and Multiplications of Double Cosets”, J. Algebra, 585 (2021), 370–421
A. M. Borodin, Aleksandr I. Bufetov, Aleksei I. Bufetov, A. M. Vershik, V. E. Gorin, A. I. Molev, V. F. Molchanov, R. S. Ismagilov, A. A. Kirillov, M. L. Nazarov, Yu. A. Neretin, N. I. Nessonov, A. Yu. Okounkov, L. A. Petrov, S. M. Khoroshkin, “Grigori Iosifovich Olshanski (on his 70th birthday)”, Russian Math. Surveys, 74:3 (2019), 555–577
A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839
V. E. Slyusarchuk, “Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation dx(t)dt=f(x(t)+h1(t))+h2(t)”, Sb. Math., 208:2 (2017), 255–268
J. Math. Sci. (N. Y.), 232:2 (2018), 138–156
Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773
A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439
L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149