Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 12, Pages 1811–1836
DOI: https://doi.org/10.1070/SM2010v201n12ABEH004133
(Mi sm7639)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantitative estimates in Beurling-Helson type theorems

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Abstract: We consider the spaces Ap(T) of functions f on the circle T such that the sequence of Fourier coefficients ˆf={ˆf(k),kZ} belongs to lp, 1p<2. The norm in Ap(T) is defined by . We study the rate of growth of the norms \|e^{i\lambda\varphi}\|_{A_p} as |\lambda|\to\infty, \lambda\in\mathbb R, for C^1-smooth real functions \varphi on \mathbb T. The results have natural applications to the problem of changes of variable in the spaces A_p(\mathbb T).
Bibliography: 17 titles.
Received: 15.10.2009 and 15.08.2010
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A16
Language: English
Original paper language: Russian
Citation: V. V. Lebedev, “Quantitative estimates in Beurling-Helson type theorems”, Sb. Math., 201:12 (2010), 1811–1836
Citation in format AMSBIB
\Bibitem{Leb10}
\by V.~V.~Lebedev
\paper Quantitative estimates in Beurling-Helson type theorems
\jour Sb. Math.
\yr 2010
\vol 201
\issue 12
\pages 1811--1836
\mathnet{http://mi.mathnet.ru/eng/sm7639}
\crossref{https://doi.org/10.1070/SM2010v201n12ABEH004133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760105}
\zmath{https://zbmath.org/?q=an:1219.42003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.201.1811L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287230700006}
\elib{https://elibrary.ru/item.asp?id=20338820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955625562}
Linking options:
  • https://www.mathnet.ru/eng/sm7639
  • https://doi.org/10.1070/SM2010v201n12ABEH004133
  • https://www.mathnet.ru/eng/sm/v201/i12/p103
    Cycle of papers
    This publication is cited in the following 6 articles:
    1. Lebedev V., “Quantitative Aspects of the Beurling-Helson Theorem: Phase Functions of a Special Form”, Studia Math., 247:3 (2019), 273–283  crossref  mathscinet  zmath  isi  scopus
    2. S. V. Konyagin, I. D. Shkredov, “A quantitative version of the Beurling-Helson theorem”, Funct. Anal. Appl., 49:2 (2015), 110–121  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. V. Lebedev, “On the Fourier Transform of the Characteristic Functions of Domains with C^1 Boundary”, Funct. Anal. Appl., 47:1 (2013), 27–37  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. V. V. Lebedev, “On Uniform Convergence of Fourier Series”, Math. Notes, 91:6 (2012), 889–892  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. V. V. Lebedev, “Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem”, Funct. Anal. Appl., 46:2 (2012), 121–132  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. V. V. Lebedev, “Estimates in Beurling–Helson Type Theorems: Multidimensional Case”, Math. Notes, 90:3 (2011), 373–384  mathnet  crossref  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:797
    Russian version PDF:239
    English version PDF:30
    References:95
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025