Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 3, Pages 394–407
DOI: https://doi.org/10.4213/mzm8865
(Mi mzm8865)
 

This article is cited in 4 scientific papers (total in 4 papers)

Estimates in Beurling–Helson Type Theorems: Multidimensional Case

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics (Technical University)
Full-text PDF (566 kB) Citations (4)
References:
Abstract: We consider the spaces Ap(Tm) of functions f on the m-dimensional torus Tm such that the sequence of Fourier coefficients ˆf={ˆf(k),kZm} belongs to lp(Zm), 1p<2. The norm on Ap(Tm) is defined by fAp(Tm)=ˆflp(Zm). We study the rate of growth of the norms eiλφAp(Tm) as |λ|, λR, for C1-smooth real functions φ on Tm (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces Ap(Rm).
Keywords: harmonic analysis, Fourier series, Beurling–Helson theorem.
Received: 06.09.2010
Revised: 04.12.2010
English version:
Mathematical Notes, 2011, Volume 90, Issue 3, Pages 373–384
DOI: https://doi.org/10.1134/S0001434611090069
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Lebedev, “Estimates in Beurling–Helson Type Theorems: Multidimensional Case”, Mat. Zametki, 90:3 (2011), 394–407; Math. Notes, 90:3 (2011), 373–384
Citation in format AMSBIB
\Bibitem{Leb11}
\by V.~V.~Lebedev
\paper Estimates in Beurling--Helson Type Theorems: Multidimensional Case
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 3
\pages 394--407
\mathnet{http://mi.mathnet.ru/mzm8865}
\crossref{https://doi.org/10.4213/mzm8865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868368}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 3
\pages 373--384
\crossref{https://doi.org/10.1134/S0001434611090069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296476500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155133817}
Linking options:
  • https://www.mathnet.ru/eng/mzm8865
  • https://doi.org/10.4213/mzm8865
  • https://www.mathnet.ru/eng/mzm/v90/i3/p394
    Cycle of papers
    This publication is cited in the following 4 articles:
    1. Lebedev V., “Quantitative Aspects of the Beurling-Helson Theorem: Phase Functions of a Special Form”, Studia Math., 247:3 (2019), 273–283  crossref  mathscinet  zmath  isi  scopus
    2. S. V. Konyagin, I. D. Shkredov, “A quantitative version of the Beurling-Helson theorem”, Funct. Anal. Appl., 49:2 (2015), 110–121  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. V. Lebedev, “On the Fourier Transform of the Characteristic Functions of Domains with $C^1$ Boundary”, Funct. Anal. Appl., 47:1 (2013), 27–37  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. V. V. Lebedev, “Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem”, Funct. Anal. Appl., 46:2 (2012), 121–132  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:679
    Full-text PDF :210
    References:113
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025