Abstract:
Let X be a separable or maximal rearrangement invariant space on [0,1]. It is shown that the inequality
‖∞∑k=1fk‖X⩽C‖(∞∑k=1f2k)1/2‖X
holds for an arbitrary sequence of independent functions
{fk}∞k=1⊂X, ∫10fk(t)dt=0,
k=1,2,…, if and only if X has the Kruglov property.
As a consequence, it is proved that the same property is necessary and sufficient for
a version of Maurey's well-known inequality for vector-valued Rademacher series with independent
coefficients to hold in X.
Bibliography: 24 titles.
\Bibitem{Ast08}
\by S.~V.~Astashkin
\paper Independent functions in rearrangement invariant
spaces and the Kruglov property
\jour Sb. Math.
\yr 2008
\vol 199
\issue 7
\pages 945--963
\mathnet{http://mi.mathnet.ru/eng/sm3906}
\crossref{https://doi.org/10.1070/SM2008v199n07ABEH003948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488220}
\zmath{https://zbmath.org/?q=an:1280.46015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900001}
\elib{https://elibrary.ru/item.asp?id=20425520}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049146929}
Linking options:
https://www.mathnet.ru/eng/sm3906
https://doi.org/10.1070/SM2008v199n07ABEH003948
https://www.mathnet.ru/eng/sm/v199/i7/p3
This publication is cited in the following 13 articles:
S. V. Astashkin, “On subspaces of Orlicz spaces spanned by independent copies
of a mean zero function”, Izv. Math., 88:4 (2024), 601–625
Sergey V. Astashkin, “The structure of subspaces in Orlicz spaces lying between L1 and L2”, Math. Z., 303:4 (2023)
Jiao Y., Sukochev F., Zanin D., “Sums of Independent and Freely Independent Identically Distributed Random Variables”, Studia Math., 251:3 (2020), 289–315
Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 419
Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 29
S. V. Astashkin, “Martingale transforms of a Rademacher sequence in symmetric spaces”, St. Petersburg Math. J., 27:2 (2016), 191–206
Astashkin S., Sukochev F.A., Zanin D., “Disjointification Inequalities in Symmetric Quasi-Banach Spaces and Their Applications”, Pac. J. Math., 270:2 (2014), 257–285
S.V. Astashkin, F.A. Sukochev, “Orlicz sequence spaces spanned by identically distributed independent random variables in -spaces”, Journal of Mathematical Analysis and Applications, 2013
Astashkin S.V., “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi-axis”, J. Funct. Anal., 260:1 (2011), 195–207
Astashkin S.V., Sukochev F.A., “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Isr. J. Math, 184:1 (2011), 455–476
Astashkin S., Sukochev F., Wong Ch.P., “Disjointification of martingale differences and conditionally independent random variables with some applications”, Studia Math., 205:2 (2011), 171–200
S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081
S. V. Astashkin, “Rademacher functions in symmetric spaces”, Journal of Mathematical Sciences, 169:6 (2010), 725–886