Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 7, Pages 945–963
DOI: https://doi.org/10.1070/SM2008v199n07ABEH003948
(Mi sm3906)
 

This article is cited in 13 scientific papers (total in 13 papers)

Independent functions in rearrangement invariant spaces and the Kruglov property

S. V. Astashkin

Samara State University
References:
Abstract: Let X be a separable or maximal rearrangement invariant space on [0,1]. It is shown that the inequality
k=1fkXC(k=1f2k)1/2X
holds for an arbitrary sequence of independent functions {fk}k=1X, 10fk(t)dt=0, k=1,2,, if and only if X has the Kruglov property. As a consequence, it is proved that the same property is necessary and sufficient for a version of Maurey's well-known inequality for vector-valued Rademacher series with independent coefficients to hold in X.
Bibliography: 24 titles.
Received: 08.06.2007 and 17.03.2008
Bibliographic databases:
UDC: 517.982.27
MSC: 46E30
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, “Independent functions in rearrangement invariant spaces and the Kruglov property”, Sb. Math., 199:7 (2008), 945–963
Citation in format AMSBIB
\Bibitem{Ast08}
\by S.~V.~Astashkin
\paper Independent functions in rearrangement invariant
spaces and the Kruglov property
\jour Sb. Math.
\yr 2008
\vol 199
\issue 7
\pages 945--963
\mathnet{http://mi.mathnet.ru/eng/sm3906}
\crossref{https://doi.org/10.1070/SM2008v199n07ABEH003948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488220}
\zmath{https://zbmath.org/?q=an:1280.46015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900001}
\elib{https://elibrary.ru/item.asp?id=20425520}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049146929}
Linking options:
  • https://www.mathnet.ru/eng/sm3906
  • https://doi.org/10.1070/SM2008v199n07ABEH003948
  • https://www.mathnet.ru/eng/sm/v199/i7/p3
  • This publication is cited in the following 13 articles:
    1. S. V. Astashkin, “On subspaces of Orlicz spaces spanned by independent copies of a mean zero function”, Izv. Math., 88:4 (2024), 601–625  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Sergey V. Astashkin, “The structure of subspaces in Orlicz spaces lying between L1 and L2”, Math. Z., 303:4 (2023)  crossref
    3. Jiao Y., Sukochev F., Zanin D., “Sums of Independent and Freely Independent Identically Distributed Random Variables”, Studia Math., 251:3 (2020), 289–315  crossref  mathscinet  isi
    4. Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 419  crossref
    5. Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 29  crossref
    6. S. V. Astashkin, “Martingale transforms of a Rademacher sequence in symmetric spaces”, St. Petersburg Math. J., 27:2 (2016), 191–206  mathnet  crossref  mathscinet  isi  elib
    7. Astashkin S., Sukochev F.A., Zanin D., “Disjointification Inequalities in Symmetric Quasi-Banach Spaces and Their Applications”, Pac. J. Math., 270:2 (2014), 257–285  crossref  mathscinet  zmath  isi  elib  scopus
    8. S.V. Astashkin, F.A. Sukochev, “Orlicz sequence spaces spanned by identically distributed independent random variables in -spaces”, Journal of Mathematical Analysis and Applications, 2013  crossref  mathscinet  scopus
    9. Astashkin S.V., “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi-axis”, J. Funct. Anal., 260:1 (2011), 195–207  crossref  mathscinet  zmath  isi  elib  scopus
    10. Astashkin S.V., Sukochev F.A., “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Isr. J. Math, 184:1 (2011), 455–476  crossref  mathscinet  zmath  isi  elib  scopus
    11. Astashkin S., Sukochev F., Wong Ch.P., “Disjointification of martingale differences and conditionally independent random variables with some applications”, Studia Math., 205:2 (2011), 171–200  crossref  mathscinet  zmath  isi  elib  scopus
    12. S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. S. V. Astashkin, “Rademacher functions in symmetric spaces”, Journal of Mathematical Sciences, 169:6 (2010), 725–886  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:513
    Russian version PDF:229
    English version PDF:23
    References:59
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025