Typesetting math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 6, Pages 1003–1081
DOI: https://doi.org/10.1070/RM2010v065n06ABEH004715
(Mi rm9382)
 

This article is cited in 22 scientific papers (total in 22 papers)

Independent functions and the geometry of Banach spaces

S. V. Astashkina, F. A. Sukochevb

a Samara State University
b School of Mathematics and Statistics, University of New South Wales, Kensington, Australia
References:
Abstract: The main objective of this survey is to present the ‘state of the art’ of those parts of the theory of independent functions which are related to the geometry of function spaces. The ‘size’ of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine–Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered.
Bibliography: 87 titles.
Keywords: independent functions, Khintchine inequalities, Kruglov property, Rosenthal inequalities, Kruglov operator, symmetric space, Orlicz space, Marcinkiewicz space, Lorentz space, Boyd indices, K-functional, real method of interpolation, integral-uniform norm.
Received: 21.06.2010
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.982
MSC: Primary 46E30, 46B09, 46B20; Secondary 60B11, 46B70
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081
Citation in format AMSBIB
\Bibitem{AstSuk10}
\by S.~V.~Astashkin, F.~A.~Sukochev
\paper Independent functions and the geometry of Banach spaces
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 6
\pages 1003--1081
\mathnet{http://mi.mathnet.ru/eng/rm9382}
\crossref{https://doi.org/10.1070/RM2010v065n06ABEH004715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2779360}
\zmath{https://zbmath.org/?q=an:1219.46025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65.1003A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289953400001}
\elib{https://elibrary.ru/item.asp?id=20423113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955647957}
Linking options:
  • https://www.mathnet.ru/eng/rm9382
  • https://doi.org/10.1070/RM2010v065n06ABEH004715
  • https://www.mathnet.ru/eng/rm/v65/i6/p3
  • This publication is cited in the following 22 articles:
    1. Yu. V. Malykhin, K. S. Ryutin, “Poperechniki i zhestkost bezuslovnykh mnozhestv i sluchainykh vektorov”, Izv. RAN. Ser. matem., 89:2 (2025), 45–59  mathnet  crossref
    2. S. V. Astashkin, “Sequences of independent functions and structure of rearrangement invariant spaces”, Russian Math. Surveys, 79:3 (2024), 375–457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. V. Astashkin, “Ob izomorfnykh vlozheniyakh v klasse diz'yunktno odnorodnykh perestanovochno invariantnykh prostranstv”, Sib. matem. zhurn., 65:3 (2024), 435–445  mathnet  crossref
    4. S. V. Astashkin, “On Isomorphic Embeddings in the Class of Disjointly Homogeneous Rearrangement Invariant Spaces”, Sib Math J, 65:3 (2024), 505  crossref
    5. V. Astashkin S., Curbera G.P., “Rosenthal'S Space Revisited”, Studia Math., 2022  crossref  mathscinet  isi
    6. Jiao Y., Sukochev F., Xie G., Zanin D., “Rosenthal'S Inequalities: Delta-Norms and Quasi-Banach Symmetric Sequence Spaces”, Studia Math., 255:1 (2020), 55–81  crossref  mathscinet  isi
    7. Jiao Y., Sukochev F., Zanin D., “Sums of Independent and Freely Independent Identically Distributed Random Variables”, Studia Math., 251:3 (2020), 289–315  crossref  mathscinet  isi  scopus
    8. Jiao Y., Sukochev F., Zanin D., “On Subspaces Spanned By Freely Independent Random Variables in Noncommutative l-P-Spaces”, Isr. J. Math., 238:1 (2020), 431–477  crossref  mathscinet  isi
    9. Junge M., Sukochev F., Zanin D., “Embeddings of Operator Ideals Into l-P-Spaces on Finite Von Neumann Algebras”, Adv. Math., 312 (2017), 473–546  crossref  mathscinet  zmath  isi  scopus
    10. Jiao Y., Sukochev F., Zanin D., “Johnson–Schechtman and Khintchine inequalities in noncommutative probability theory”, J. Lond. Math. Soc.-Second Ser., 94:1 (2016), 113–140  crossref  mathscinet  zmath  isi  scopus
    11. Jiao Y., Sukochev F., Xie G., Zanin D., “Φ-moment inequalities for independent and freely independent random variables”, J. Funct. Anal., 270:12 (2016), 4558–4596  crossref  mathscinet  zmath  isi  elib  scopus
    12. Astashkin S.V., Sukochev F.A., “Randomized Operators on
      n×n
      n × n Matrices and Applications”, Integr. Equ. Oper. Theory, 86:3 (2016), 333–358  crossref  mathscinet  zmath  isi  elib  scopus
    13. S. V. Astashkin, “Martingale transforms of a Rademacher sequence in symmetric spaces”, St. Petersburg Math. J., 27:2 (2016), 191–206  mathnet  crossref  mathscinet  isi  elib
    14. S. V. Astashkin, F. A. Sukochev, “Orlicz sequence spaces spanned by identically distributed independent random variables in Lp-spaces”, J. Math. Anal. Appl., 413:1 (2014), 1–19  crossref  mathscinet  zmath  isi  scopus
    15. S. V. Astashkin, “Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions”, Math. Notes, 96:5 (2014), 625–633  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. S. V. Astashkin, “Martingale Rosenthal inequalities in symmetric spaces”, Sb. Math., 205:12 (2014), 1720–1740  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. S. Astashkin, F. A. Sukochev, D. Zanin, “Disjointification inequalities in symmetric quasi-Banach spaces and their applications”, Pacific J. Math., 270:2 (2014), 257–285  crossref  mathscinet  zmath  isi  scopus
    18. S. V. Astashkin, “On Complementability of Subspaces in Symmetric Spaces with the Kruglov Property”, Funct. Anal. Appl., 47:2 (2013), 148–151  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. S. V. Astashkin, “On subspaces generated by independent functions in symmetric spaces with Kruglov property”, St. Petersburg Math. J., 25:4 (2014), 513–527  mathnet  crossref  mathscinet  zmath  isi  elib
    20. S. V. Astashkin, “Rosenthal type inequalities for martingales in symmetric spaces”, Russian Math. (Iz. VUZ), 56:11 (2012), 52–57  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1403
    Russian version PDF:419
    English version PDF:56
    References:129
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025