Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 4, Pages 579–612
DOI: https://doi.org/10.1070/SM2008v199n04ABEH003934
(Mi sm3834)
 

This article is cited in 24 scientific papers (total in 24 papers)

Chromatic numbers of real and rational spaces with real or rational forbidden distances

A. M. Raigorodskii, I. M. Shitova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Several important aspects of the Nelson-Erdős-Hadwiger classical problem of combinatorial geometry are considered. In particular, new lower bounds are obtained for the chromatic numbers of the spaces Rn and Qn with two, three or four forbidden distances.
Bibliography: 28 titles.
Received: 26.01.2007
Bibliographic databases:
UDC: 519.174
MSC: Primary 52C10; Secondary 05C15, 51M99
Language: English
Original paper language: Russian
Citation: A. M. Raigorodskii, I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances”, Sb. Math., 199:4 (2008), 579–612
Citation in format AMSBIB
\Bibitem{RaiShi08}
\by A.~M.~Raigorodskii, I.~M.~Shitova
\paper Chromatic numbers of real and rational spaces with real or rational forbidden distances
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 579--612
\mathnet{http://mi.mathnet.ru/eng/sm3834}
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003934}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410142}
\zmath{https://zbmath.org/?q=an:05503285}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400013}
\elib{https://elibrary.ru/item.asp?id=20359323}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48049122798}
Linking options:
  • https://www.mathnet.ru/eng/sm3834
  • https://doi.org/10.1070/SM2008v199n04ABEH003934
  • https://www.mathnet.ru/eng/sm/v199/i4/p107
  • This publication is cited in the following 24 articles:
    1. Bau Sh., Johnson P., Noble M., “On Single-Distance Graphs on the Rational Points in Euclidean Spaces”, Can. Math. Bul.-Bul. Can. Math., 64:1 (2021), 13–24  crossref  mathscinet  isi  scopus
    2. L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203  mathnet  crossref  crossref  mathscinet  isi  elib
    3. E. S. Gorskaya, I. M. Mitricheva, “The chromatic number of the space $(\mathbb R^n, l_1)$”, Sb. Math., 209:10 (2018), 1445–1462  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. A. Sokolov, A. M. Raigorodskii, “O ratsionalnykh analogakh problem Nelsona–Khadvigera i Borsuka”, Chebyshevskii sb., 19:3 (2018), 270–281  mathnet  crossref  elib
    5. S. N. Popova, “Zero-one law for random subgraphs of some distance graphs with vertices in $\mathbb Z^n$”, Sb. Math., 207:3 (2016), 458–478  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. V. Berdnikov, “Estimate for the Chromatic Number of Euclidean Space with Several Forbidden Distances”, Math. Notes, 99:5 (2016), 774–778  mathnet  crossref  crossref  mathscinet  isi  elib
    7. S. N. Popova, “Zero-one laws for random graphs with vertices in a Boolean cube”, Siberian Adv. Math., 27:1 (2017), 26–75  mathnet  crossref  crossref  mathscinet  elib
    8. A. V. Berdnikov, “Chromatic number with several forbidden distances in the space with the $\ell_q$-metric”, Journal of Mathematical Sciences, 227:4 (2017), 395–401  mathnet  mathnet  crossref
    9. E. I. Ponomarenko, A. M. Raigorodskii, “New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances”, Math. Notes, 97:2 (2015), 249–254  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. S. N. Popova, “Zero-one law for random distance graphs with vertices in $\{-1,0,1\}^n$”, Problems Inform. Transmission, 50:1 (2014), 57–78  mathnet  crossref  isi
    11. D. V. Samirov, A. M. Raigorodskii, “New bounds for the chromatic number of a space with forbidden isosceles triangles”, Dokl. Math, 89:3 (2014), 313  crossref  mathscinet  zmath  elib  scopus
    12. A. E. Zvonarev, A. M. Raigorodskii, D. V. Samirov, A. A. Kharlamova, “On the chromatic number of a space with forbidden equilateral triangle”, Sb. Math., 205:9 (2014), 1310–1333  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. E. Zvonarev, A. M. Raigorodskii, D. V. Samirov, A. A. Kharlamova, “Improvement of the Frankl-Rödl theorem on the number of edges in hypergraphs with forbidden cardinalities of edge intersections”, Dokl. Math, 90:1 (2014), 432  crossref  mathscinet  zmath  elib  scopus
    14. A. V. Berdnikov, A. M. Raigorodskii, “On the Chromatic Number of Euclidean Space with Two Forbidden Distances”, Math. Notes, 96:5 (2014), 827–830  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. A. M. Raigorodskii, D. V. Samirov, “Chromatic Numbers of Spaces with Forbidden Monochromatic Triangles”, Math. Notes, 93:1 (2013), 163–171  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. E. E. Demekhin, A. M. Raigorodskii, O. I. Rubanov, “Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size”, Sb. Math., 204:4 (2013), 508–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. E. I. Ponomarenko, A. M. Raigorodskii, “A new lower bound for the chromatic number of the rational space”, Russian Math. Surveys, 68:5 (2013), 960–962  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. D. V. Samirov, A. M. Raigorodskii, “New lower bounds for the chromatic number of a space with forbidden isosceles triangles”, J. Math. Sci. (N. Y.), 204:4 (2015), 531–541  mathnet  mathnet  crossref
    19. Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429  crossref
    20. I. M. Mitricheva (Shitova), “On the Chromatic Number for a Set of Metric Spaces”, Math. Notes, 91:3 (2012), 399–408  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:794
    Russian version PDF:312
    English version PDF:56
    References:84
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025