Citation:
E. I. Ponomarenko, A. M. Raigorodskii, “A new lower bound for the chromatic number of the rational space”, Russian Math. Surveys, 68:5 (2013), 960–962
\Bibitem{PonRai13}
\by E.~I.~Ponomarenko, A.~M.~Raigorodskii
\paper A new lower bound for the chromatic number of the rational space
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 5
\pages 960--962
\mathnet{http://mi.mathnet.ru/eng/rm9549}
\crossref{https://doi.org/10.1070/RM2013v068n05ABEH004865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155166}
\zmath{https://zbmath.org/?q=an:1286.05051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..960P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329123400008}
\elib{https://elibrary.ru/item.asp?id=21277006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891960180}
Linking options:
https://www.mathnet.ru/eng/rm9549
https://doi.org/10.1070/RM2013v068n05ABEH004865
https://www.mathnet.ru/eng/rm/v68/i5/p183
This publication is cited in the following 7 articles:
Yu. A. Demidovich, M. E. Zhukovskii, “Chromatic Numbers of Distance Graphs without Short Odd Cycles in Rational Spaces”, Math. Notes, 109:5 (2021), 727–734
A. V. Bobu, A. E. Kupriyanov, “Refinement of Lower Bounds of the Chromatic Number of a Space with Forbidden One-Color Triangles”, Math. Notes, 105:3 (2019), 329–341
Yu. A. Demidovich, “Distance Graphs with Large Chromatic Number and without Cliques of Given Size in the Rational Space”, Math. Notes, 106:1 (2019), 38–51
A. A. Sokolov, A. M. Raigorodskii, “O ratsionalnykh analogakh problem Nelsona–Khadvigera i Borsuka”, Chebyshevskii sb., 19:3 (2018), 270–281
Yu. A. Demidovich, “Lower Bound for the Chromatic Number of a Rational Space with Metric lu and with One Forbidden Distance”, Math. Notes, 102:4 (2017), 492–507
A. Ya. Kanel-Belov, V. A. Voronov, D. D. Cherkashin, “On the chromatic number of infinitesimal plane layer”, St. Petersburg Math. J., 29:5 (2018), 761–775