Abstract:
Classical and new results on integrable geodesic flows on two-dimensional surfaces are reviewed. The central question is the classification of such flows up to various equivalences, of which the following four kinds are the most interesting ones: 1) isometry; 2) geodesic equivalence;
3) orbital equivalence; 4) Liouville equivalence.
Citation:
A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466
\Bibitem{BolMatFom98}
\by A.~V.~Bolsinov, V.~S.~Matveev, A.~T.~Fomenko
\paper Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
\jour Sb. Math.
\yr 1998
\vol 189
\issue 10
\pages 1441--1466
\mathnet{http://mi.mathnet.ru/eng/sm346}
\crossref{https://doi.org/10.1070/sm1998v189n10ABEH000346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691292}
\zmath{https://zbmath.org/?q=an:0917.58031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078221100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0013251893}
Linking options:
https://www.mathnet.ru/eng/sm346
https://doi.org/10.1070/sm1998v189n10ABEH000346
https://www.mathnet.ru/eng/sm/v189/i10/p5
This publication is cited in the following 61 articles:
Sergei Agapov, Vladislav Shubin, “New examples of non-polynomial integrals of two-dimensional geodesic flows
*”, J. Phys. A: Math. Theor., 57:1 (2024), 015204
Sergei V. Agapov, Maria V. Demina, “Integrable geodesic flows and metrisable second-order ordinary differential equations”, Journal of Geometry and Physics, 199 (2024), 105168
Andrey Yu. Konyaev, Jonathan M. Kress, Vladimir S. Matveev, “When a (1,1)-tensor generates separation of variables of a certain metric”, Journal of Geometry and Physics, 195 (2024), 105031
Jaume Giné, Dmitry I. Sinelshchikov, “On the geometric and analytical properties of the anharmonic oscillator”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107875
JOSCHA HENHEIK, “Deformational rigidity of integrable metrics on the torus”, Ergod. Th. Dynam. Sys., 2024, 1
Dmitri Bykov, Andrew Kuzovchikov, “The classical and quantum particle on a flag manifold”, Class. Quantum Grav., 41:20 (2024), 205009
Corentin Fierobe, Vadim Kaloshin, Alfonso Sorrentino, Lecture Notes in Mathematics, 2347, Modern Aspects of Dynamical Systems, 2024, 1
S. V. Agapov, A. E. Mironov, “Finite-Gap Potentials and Integrable Geodesic Equations on a 2-Surface”, Proc. Steklov Inst. Math., 327 (2024), 1–11
Claudia Maria Chanu, Giovanni Rastelli, “Separation of Variables and Superintegrability on Riemannian Coverings”, SIGMA, 19 (2023), 062, 18 pp.
S. V. Agapov, Zh. Sh. Fakhriddinov, “O nekotorykh svoistvakh polugamiltonovykh sistem, voznikayuschikh v zadache ob integriruemykh geodezicheskikh potokakh na dvumernom tore”, Sib. matem. zhurn., 64:5 (2023), 881–894
S. V. Agapov, Zh. Sh. Fakhriddinov, “On Some Properties of Semi-Hamiltonian Systems Arising in the Problem of Integrable Geodesic Flows on the Two-Dimensional Torus”, Sib Math J, 64:5 (2023), 1063
G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
Kaloshin V., Sorrentino A., “Inverse Problems and Rigidity Questions in Billiard Dynamics”, Ergod. Theory Dyn. Syst., 42:3, SI (2022), PII S0143385721000377, 1023–1056
V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664
Agafonov S.I., “Quadratic Integrals of Geodesic Flow, Webs, and Integrable Billiards”, J. Geom. Phys., 161 (2021), 104041
Fomenko A.T. Vedyushkina V.V. Zav'yalov V.N., “Liouville Foliations of Topological Billiards With Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
Bryant R.L., Foulon P., Ivanov V S., Matveev V.S., Ziller W., “Geodesic Behavior For Finsler Metrics of Constant Positive Flag Curvature on S-2”, J. Differ. Geom., 117:1 (2021), 1–22
Burns K., Matveev V.S., “Open Problems and Questions About Geodesics”, Ergod. Theory Dyn. Syst., 41:3 (2021), PII S0143385719000737, 641–684
H. M. Yehia, A. M. Hussein, “New Families of Integrable Two-Dimensional Systems with Quartic Second Integrals”, Rus. J. Nonlin. Dyn., 16:2 (2020), 211–242