Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1979, Volume 35, Issue 5, Pages 631–680
DOI: https://doi.org/10.1070/SM1979v035n05ABEH001615
(Mi sm2679)
 

This article is cited in 70 scientific papers (total in 71 papers)

Absolute continuity and singularity of locally absolutely continuous probability distributions. I

Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev
References:
Abstract: Let (Ω,F) be a measurable space provided with a nondecreasing family of σ-algebras (Ft)t0 with F=t0Ft and ˜P and P two locally absolutely continuous probability measures on (Ω,F), i.e., such that ˜PtPt for t0 (˜Pt and Pt are the restrictions of ˜P and P to Ft). One asks when ˜PP or ˜PP. An answer to this question is given in terms of the convergence set of a certain increasing predictable process constructed for the martingale Z=(Zt,Ft,P) with Zt=d˜Pt/dPt. Actually, the somewhat more general situation of θ-local absolute continuity of measures is studied. The proof of the fundamental theorem is based on a series of results that are of independent interest.
In § 2 the theory of integration with respect to random measures is developed. § 4 deals with the convergence sets of semimartingales, and § 5 with the transformation of the predictable characteristics of a semimartingale under a locally absolutely continuous change of measure. Sufficient conditions are given in § 7 for the uniform integrability of nonnegative local martingales.
Bibliography: 24 titles.
Received: 11.01.1978
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: Primary 60G30, 60G45, 60H05; Secondary 28A40, 60G25, 60G40
Language: English
Original paper language: Russian
Citation: Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “Absolute continuity and singularity of locally absolutely continuous probability distributions. I”, Math. USSR-Sb., 35:5 (1979), 631–680
Citation in format AMSBIB
\Bibitem{KabLipShi78}
\by Yu.~M.~Kabanov, R.~Sh.~Liptser, A.~N.~Shiryaev
\paper Absolute continuity and singularity of locally absolutely continuous probability distributions.~I
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 5
\pages 631--680
\mathnet{http://mi.mathnet.ru/eng/sm2679}
\crossref{https://doi.org/10.1070/SM1979v035n05ABEH001615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=515738}
\zmath{https://zbmath.org/?q=an:0426.60039|0402.60039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JG48000003}
Linking options:
  • https://www.mathnet.ru/eng/sm2679
  • https://doi.org/10.1070/SM1979v035n05ABEH001615
  • https://www.mathnet.ru/eng/sm/v149/i3/p364
    Cycle of papers
    This publication is cited in the following 71 articles:
    1. Bohan Li, Junyi Guo, Xiaoqing Liang, “Optimal Monotone Mean-Variance Problem in a Catastrophe Insurance Model”, Methodol Comput Appl Probab, 27:1 (2025)  crossref
    2. A. A. Gushchin, “Uniform integrability of nonnegative supermartingales via change of time in geometric Brownian motion”, Theory Probab. Appl., 69:4 (2025), 622–629  mathnet  crossref  crossref  mathscinet
    3. Bohan Li, Junyi Guo, Linlin Tian, “Optimal investment and reinsurance policies for the Cramér–Lundberg risk model under monotone mean-variance preference”, International Journal of Control, 2023, 1  crossref
    4. Bohan Li, Junyi Guo, “Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion”, RAIRO-Oper. Res., 55:4 (2021), 2469  crossref
    5. T. Benoist, M. Fraas, Y. Pautrat, C. Pellegrini, “Invariant Measure for Stochastic Schrödinger Equations”, Ann. Henri Poincaré, 22:2 (2021), 347  crossref
    6. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
    7. David Criens, Kathrin Glau, “Absolute continuity of semimartingales”, Electron. J. Probab., 23:none (2018)  crossref
    8. David Criens, “Structure-preserving equivalent martingale measures for ℋ-SII models”, J. Appl. Probab., 55:1 (2018), 1  crossref
    9. Irina Penner, Anthony Réveillac, “Risk measures for processes and BSDEs”, Finance Stoch, 2014  crossref  mathscinet
    10. F. Klebaner, R. Liptser, “When a stochastic exponential is a true martingale. Extension of the Beneš method”, Theory Probab. Appl., 58:1 (2014), 38–62  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. Kardaras C., “Market Viability via Absence of Arbitrage of the First Kind”, Financ. Stoch., 16:4 (2012), 651–667  crossref  mathscinet  zmath  isi
    12. Lars Peter Hansen, Thomas J. Sargent, Gauhar Turmuhambetova, Noah Williams, “Robust control and model misspecification”, Journal of Economic Theory, 128:1 (2006), 45  crossref  mathscinet  zmath
    13. Alexander Cherny, Mikhail Urusov, From Stochastic Calculus to Mathematical Finance, 2006, 125  crossref
    14. Probability and its Applications, Point Process Theory and Applications, 2006, 103  crossref
    15. Kacha Dzhaparidze, Peter Spreij, Esko Valkeila, “Information processes for semimartingale experiments”, Ann. Probab., 31:1 (2003)  crossref
    16. A. A. Gushchin, É. Mordecki, “Bounds on Option Prices for Semimartingale Market Models”, Proc. Steklov Inst. Math., 237 (2002), 73–113  mathnet  mathscinet  zmath
    17. Galtchouk L., “Optimality of the Wald Sprt for Processes with Continuous Time Parameter”, Moda6 Advances in Model-Oriented Design and Analysis, Contributions to Statistics, ed. Atkinson A. Hackl P. Muller W., Physica-Verlag Gmbh & Co, 2001, 97–110  crossref  mathscinet  isi
    18. Robert S. Liptser, Albert N. Shiryaev, Statistics of Random Processes, 2001, 251  crossref
    19. Robert S. Liptser, Albert N. Shiryaev, Stochastic Modelling and Applied Probability, 6, Statistics of Random Processes, 2001, 309  crossref
    20. W. Schachermayer, W. Schachinger, “Is There a Predictable Criterion for Mutual Singularity of Two Probability Measures on a Filtered Space?”, Theory Probab Appl, 44:1 (2000), 51  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1209
    Russian version PDF:450
    English version PDF:39
    References:87
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025