Processing math: 100%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 237, Pages 80–122 (Mi tm325)  

This article is cited in 20 scientific papers (total in 20 papers)

Bounds on Option Prices for Semimartingale Market Models

A. A. Gushchina, É. Mordeckib

a Steklov Mathematical Institute, Russian Academy of Sciences
b Facultad de Ciencias, Centro de Matemática
References:
Abstract: We propose a methodology for determining the range of option prices of a European option with a convex payoff function in a general semimartingale market model. Prices are obtained as expectations with respect to the set of equivalent martingale measures. Since the set of prices is an interval on the real line, two main questions are considered: (i) how to find upper and lower estimates for the range of prices, and (ii) how to establish the attainability of these estimates. To solve the first question, we introduce a partial ordering in the set of distributions of discounted stock prices (adapted from the theory of statistical experiments), which allows us to find extremal distributions and, accordingly, the upper and lower bounds for the range of option prices. The weak convergence of probability measures is used to answer the second question, whether the bounds obtained at the first step are exact. Exploiting stochastic calculus, we give answers to both questions in terms (the most natural for this problem) of predictable characteristics of the stochastic logarithm of a discounted stock price process. Special attention is given to two examples: a discrete-time and a diffusion-with-jumps market models.
Received in February 2001
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. A. Gushchin, É. Mordecki, “Bounds on Option Prices for Semimartingale Market Models”, Stochastic financial mathematics, Collected papers, Trudy Mat. Inst. Steklova, 237, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 80–122; Proc. Steklov Inst. Math., 237 (2002), 73–113
Citation in format AMSBIB
\Bibitem{GusMor02}
\by A.~A.~Gushchin, \'E.~Mordecki
\paper Bounds on Option Prices for Semimartingale Market Models
\inbook Stochastic financial mathematics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 237
\pages 80--122
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1976509}
\zmath{https://zbmath.org/?q=an:1113.91319}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 237
\pages 73--113
Linking options:
  • https://www.mathnet.ru/eng/tm325
  • https://www.mathnet.ru/eng/tm/v237/p80
  • This publication is cited in the following 20 articles:
    1. S. S. Leschenko, “Reshenie zadachi chastichnogo khedzhirovaniya cherez dvoistvennuyu zadachu”, Chebyshevskii sb., 24:3 (2023), 26–41  mathnet  crossref
    2. Kopfer B., Ruschendorf L., “The Martingale Comparison Method For Markov Processes”, J. Appl. Probab., 58:1 (2021), PII S002190022000087X, 164–176  crossref  mathscinet  isi
    3. Ly S., Privault N., “Stochastic Ordering By G-Expectations”, Probab. Uncertaint. Quant. Risk, 6:1 (2021), 61–98  crossref  mathscinet  isi
    4. Gushchin A.A., Leshchenko S.S., “Testing Hypotheses For Measures With Different Masses: Four Optimization Problems”, Theory Probab. Math. Stat., 101 (2019), 98–105  mathscinet  isi
    5. Deaconu M., Lejay A., Salhi Kh., “Approximation of Cvar Minimization For Hedging Under Exponential-Levy Models”, J. Comput. Appl. Math., 326 (2017), 171–182  crossref  mathscinet  zmath  isi  scopus
    6. Rueschendorf L., Schnurr A., Wolf V., “Comparison of time-inhomogeneous Markov processes”, Adv. Appl. Probab., 48:4 (2016), 1015–1044  crossref  mathscinet  zmath  isi  scopus
    7. Bellini F., Pellerey F., Sgarra C., Sekeh S.Ya., “Comparison Results For Garch Processes”, J. Appl. Probab., 51:3 (2014), 685–698  crossref  mathscinet  zmath  isi
    8. S. A. Khihol, “Averaging the local characteristics brings a semimartingale with independent increments closer to Lévy processes”, Theory Probab. Appl., 58:3 (2014), 413–429  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. D. B. Rokhlin, “Recurrence relations for price bounds of contingent claims in discrete time market models”, Theory Probab. Appl., 56:1 (2012), 72–95  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. S. A. Khihol, “Averaging local characteristics makes a semimartingale with independent increments closer to Lévy processes”, Russian Math. Surveys, 65:2 (2010), 386–387  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Rudloff B., “Coherent hedging in incomplete markets”, Quant. Finance, 9:2 (2009), 197–206  crossref  mathscinet  zmath  isi  scopus
    12. A. A. Gushchin, “On extension of f-divergence”, Theory Probab. Appl., 52:3 (2008), 439–455  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Schied A., Stadje M., “Robustness of delta hedging for path-dependent options in local volatility models”, J. Appl. Probab., 44:4 (2007), 865–879  crossref  mathscinet  zmath  isi  scopus
    14. Bergenthum J., Rüdschendorf L., “Comparison of semimartingales and Levy processes”, Ann. Probab., 35:1 (2007), 228–254  crossref  mathscinet  zmath  adsnasa  isi  scopus
    15. Bergenthum J., Rueschendorf L., “Convex ordering criteria for Levy processes”, Advances in Data Analysis and Classification, 1:2 (2007), 143–173  crossref  mathscinet  zmath  isi  scopus
    16. Bergenthum J., Rüschendorf L., “Comparison of option prices in semimartingale models”, Finance Stoch., 10:2 (2006), 222–249  crossref  mathscinet  zmath  isi  scopus
    17. Branger N., Mahayni A., “Tractable hedging: An implementation of robust hedging strategies”, Journal of Economic Dynamics & Control, 30:11 (2006), 1937–1962  crossref  mathscinet  zmath  isi  scopus
    18. Kirch M., Runggaldier W.J., “Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities”, SIAM J. Control Optim., 43:4 (2004), 1174–1195  crossref  mathscinet  zmath  isi  scopus
    19. Møller Th., “Stochastic orders in dynamic reinsurance markets”, Finance Stoch., 8:4 (2004), 479–499  crossref  mathscinet  isi  scopus
    20. Proc. Steklov Inst. Math., 237 (2002), 134–139  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:734
    Full-text PDF :273
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025