Abstract:
In the metric of the space φ(L) generated by a continuous even function φ(x) increasing on [0,∞) such that φ(0)=0, limx→∞φ(x)=∞ one finds estimates of the error of approximation by partial sums of Faber–Schauder series in the function classes C1 and W1Hω, where ω(t) is a concave modulus of continuity.
Bibliography: 21 titles.
Citation:
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of classes of differentiable functions by Faber–Schauder partial sums”, Sb. Math., 197:3 (2006), 303–314
\Bibitem{VakShc06}
\by S.~B.~Vakarchuk, A.~N.~Shchitov
\paper Estimates for the error of approximation of classes of differentiable functions by Faber--Schauder partial sums
\jour Sb. Math.
\yr 2006
\vol 197
\issue 3
\pages 303--314
\mathnet{http://mi.mathnet.ru/eng/sm1541}
\crossref{https://doi.org/10.1070/SM2006v197n03ABEH003759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264332}
\zmath{https://zbmath.org/?q=an:1134.41316}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239727500001}
\elib{https://elibrary.ru/item.asp?id=9188975}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747067719}
Linking options:
https://www.mathnet.ru/eng/sm1541
https://doi.org/10.1070/SM2006v197n03ABEH003759
https://www.mathnet.ru/eng/sm/v197/i3/p3
This publication is cited in the following 2 articles:
Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of functions in L1p by polynomials
and partial sums of series in the Haar and Faber–Schauder systems”, Izv. Math., 79:2 (2015), 257–287