Processing math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 257–287
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002742
(Mi im8094)
 

This article is cited in 4 scientific papers (total in 4 papers)

Estimates for the error of approximation of functions in L1p by polynomials and partial sums of series in the Haar and Faber–Schauder systems

S. B. Vakarchuka, A. N. Shchitovb

a Dnepropetrovsk University of Economics and Law
b Ukrainian Academy of Customs, Dnipropetrovsk
References:
Abstract: We find exact estimates for the error of approximation of functions in the classes L1p by polynomials in the Haar system and partial sums of the Faber–Schauder series in the metrics of the spaces Lp. The error in approximating a function fL1p is estimated in terms of the norms of the first derivatives f(1)Lp and f(1)¯S(1)n(f)Lp. The resulting bounds are unimprovable for some values of n.
Keywords: Haar system of functions, Faber–Schauder system of functions, best approximation of functions by polynomials, one-sided approximation of functions by polynomials.
Received: 21.01.2013
Revised: 31.07.2014
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A25
Language: English
Original paper language: Russian
Citation: S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of functions in L1p by polynomials and partial sums of series in the Haar and Faber–Schauder systems”, Izv. Math., 79:2 (2015), 257–287
Citation in format AMSBIB
\Bibitem{VakShc15}
\by S.~B.~Vakarchuk, A.~N.~Shchitov
\paper Estimates for the error of approximation of functions in $L_p^1$ by polynomials
and partial sums of series in the Haar and Faber--Schauder systems
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 257--287
\mathnet{http://mi.mathnet.ru/eng/im8094}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352590}
\zmath{https://zbmath.org/?q=an:06443923}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..257V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400003}
\elib{https://elibrary.ru/item.asp?id=23421422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928714603}
Linking options:
  • https://www.mathnet.ru/eng/im8094
  • https://doi.org/10.1070/IM2015v079n02ABEH002742
  • https://www.mathnet.ru/eng/im/v79/i2/p45
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:745
    Russian version PDF:194
    English version PDF:35
    References:133
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025