Abstract:
We find exact estimates for the error of approximation of functions
in the classes L1p by polynomials in the Haar system and partial
sums of the Faber–Schauder series in the metrics of the spaces Lp.
The error in approximating a function f∈L1p is estimated
in terms of the norms of the first derivatives ‖f(1)‖Lp and
‖f(1)−¯S(1)n(f)‖Lp. The resulting bounds are
unimprovable for some values of n.
Keywords:
Haar system of functions, Faber–Schauder system of functions, best
approximation of functions by polynomials, one-sided approximation
of functions by polynomials.
Citation:
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of functions in L1p by polynomials
and partial sums of series in the Haar and Faber–Schauder systems”, Izv. Math., 79:2 (2015), 257–287
\Bibitem{VakShc15}
\by S.~B.~Vakarchuk, A.~N.~Shchitov
\paper Estimates for the error of approximation of functions in $L_p^1$ by polynomials
and partial sums of series in the Haar and Faber--Schauder systems
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 257--287
\mathnet{http://mi.mathnet.ru/eng/im8094}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352590}
\zmath{https://zbmath.org/?q=an:06443923}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..257V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400003}
\elib{https://elibrary.ru/item.asp?id=23421422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928714603}
Linking options:
https://www.mathnet.ru/eng/im8094
https://doi.org/10.1070/IM2015v079n02ABEH002742
https://www.mathnet.ru/eng/im/v79/i2/p45
This publication is cited in the following 4 articles: