Abstract:
We obtain two criteria for the solubility of an ordinary free interpolation
problem in the class of entire functions of (non-prescribed) finite type
with respect to a zero proximate order ρ(r). We impose only one
natural restriction on ρ(r) guaranteeing that the class considered
consists not only of polynomials. One criterion is stated in terms
of the measure determined by the interpolation nodes, and the other in terms
of the canonical product generated by these nodes.
Citation:
O. A. Bozhenko, A. F. Grishin, K. G. Malyutin, “An interpolation problem in the class of entire functions of zero order”, Izv. Math., 79:2 (2015), 233–256
\Bibitem{BozGriMal15}
\by O.~A.~Bozhenko, A.~F.~Grishin, K.~G.~Malyutin
\paper An interpolation problem in the class of entire functions of zero order
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 233--256
\mathnet{http://mi.mathnet.ru/eng/im8064}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352589}
\zmath{https://zbmath.org/?q=an:06443922}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..233B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400002}
\elib{https://elibrary.ru/item.asp?id=23421421}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928732987}
Linking options:
https://www.mathnet.ru/eng/im8064
https://doi.org/10.1070/IM2015v079n02ABEH002741
https://www.mathnet.ru/eng/im/v79/i2/p21
This publication is cited in the following 1 articles:
K. G. Malyutin, “Interpolation Problems of A. F. Leontiev Type”, J. Math. Sci. (N. Y.), 252:3 (2021), 399–419