Loading [MathJax]/jax/output/SVG/config.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1993, Volume 75, Issue 1, Pages 277–283
DOI: https://doi.org/10.1070/SM1993v075n01ABEH003385
(Mi sm1470)
 

This article is cited in 24 scientific papers (total in 24 papers)

Singular toric Fano varieties

A. A. Borisov, L. A. Borisov

M. V. Lomonosov Moscow State University
References:
Abstract: The authors prove that the number of types of toric Fano varieties with certain constraints on the singularities is finite.
Received: 25.09.1990
Bibliographic databases:
MSC: 14J45, 14M25
Language: English
Original paper language: Russian
Citation: A. A. Borisov, L. A. Borisov, “Singular toric Fano varieties”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 277–283
Citation in format AMSBIB
\Bibitem{BorBor92}
\by A.~A.~Borisov, L.~A.~Borisov
\paper Singular toric Fano varieties
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 75
\issue 1
\pages 277--283
\mathnet{http://mi.mathnet.ru/eng/sm1470}
\crossref{https://doi.org/10.1070/SM1993v075n01ABEH003385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1166957}
\zmath{https://zbmath.org/?q=an:0786.14028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..75..277B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LG75100017}
Linking options:
  • https://www.mathnet.ru/eng/sm1470
  • https://doi.org/10.1070/SM1993v075n01ABEH003385
  • https://www.mathnet.ru/eng/sm/v183/i2/p134
  • This publication is cited in the following 24 articles:
    1. Ziquan Zhuang, “On boundedness of singularities and minimal log discrepancies of Kollár components”, J. Algebraic Geom., 33:3 (2024), 521  crossref
    2. Joaquín Moraga, “Coregularity of Fano varieties”, Geom Dedicata, 218:2 (2024)  crossref
    3. Jürgen Hausen, Christian Mauz, Milena Wrobel, “The Anticanonical Complex for Non-degenerate Toric Complete Intersections”, manuscripta math., 172:1-2 (2023), 89  crossref
    4. C. Birkar, Y. Chen, “Singularities on toric fibrations”, Sb. Math., 212:3 (2021), 288–304  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    5. V. V. Przyjalkowski, С. A. Shramov, “Smooth Prime Fano Complete Intersections in Toric Varieties”, Math. Notes, 109:4 (2021), 609–613  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Jiang Ch., “On Birational Boundedness of Fano Fibrations”, Am. J. Math., 140:5 (2018), 1253–1276  crossref  mathscinet  zmath  isi  scopus
    7. B. Bechtold, J. Hausen, E. Huggenberger, M. Nicolussi, “On Terminal Fano 3-Folds with 2-Torus Action”, International Mathematics Research Notices, 2015  crossref  mathscinet
    8. Coates T., Gonshaw S., Kasprzyk A., Nabijou N., “Mutations of Fake Weighted Projective Spaces”, Electron. J. Comb., 21:4 (2014)  mathscinet  zmath  isi
    9. Averkov G., “On the Size of Lattice Simplices with a Single Interior Lattice Point”, SIAM Discret. Math., 26:2 (2012), 515–526  crossref  mathscinet  zmath  isi
    10. Prokhorov Yu., “Q-Fano Threefolds of Large Fano Index, I”, Doc Math, 15 (2010), 843–872  mathscinet  zmath  isi
    11. Kasprzyk A.M., “Canonical Toric Fano Threefolds”, Can. J. Math.-J. Can. Math., 62:6 (2010), 1293–1309  crossref  mathscinet  zmath  isi
    12. Okada T., “On the Birational Unboundedness of Higher Dimensional Q-Fano Varieties”, Math. Ann., 345:1 (2009), 195–212  crossref  mathscinet  zmath  isi
    13. Prokhorov Yu.G., Shokurov V.V., “Towards the Second Main Theorem on Complements”, J. Algebr. Geom., 18:1 (2009), 151–199  crossref  mathscinet  zmath  isi  elib
    14. Pasquier B., “Fano Horospherical Varieties”, Bull. Soc. Math. Fr., 136:2 (2008), 195–225  crossref  mathscinet  zmath  isi
    15. Nill, B, “Volume and lattice points of reflexive simplices”, Discrete & Computational Geometry, 37:2 (2007), 301  crossref  mathscinet  zmath  isi
    16. Alexander M. Kasprzyk, “Toric Fano three-folds with terminal singularities”, Tohoku Math. J. (2), 58:1 (2006)  crossref
    17. K. A. Shramov, “Elementary Birational Maps between Mori Toric Fiber 3-Spaces”, Math. Notes, 78:1 (2005), 120–127  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    18. McKernan, J, “Threefold thresholds”, Manuscripta Mathematica, 114:3 (2004), 281  crossref  mathscinet  zmath  isi  elib
    19. Proc. Steklov Inst. Math., 240 (2003), 75–213  mathnet  mathscinet  zmath
    20. Debarre O., “Fano Varieties”, Higher Dimensional Varieties and Rational Points, Bolyai Society Mathematical Studies, 12, eds. Boroczky K., Kollar K., Szamuely T., Springer-Verlag Berlin, 2003, 93–132  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:657
    Russian version PDF:240
    English version PDF:41
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025