Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 240, Pages 82–219 (Mi tm384)  

This article is cited in 62 scientific papers (total in 63 papers)

Prelimiting Flips

V. V. Shokurov

Johns Hopkins University
References:
Abstract: The paper discusses an inductive approach to constructing log flips. In addition to special termination and thresholds, we introduce two new ingredients: the saturation of linear systems, and families of divisors with confined singularities. We state conjectures concerning these notions in any dimension and prove them in general in dimension 2. This allows us to construct prelimiting flips (pl flips) and all log flips in dimension 4 and to prove the stabilization of an asymptotically saturated system of birationally free (b-free) divisors under certain conditions in dimension 3. In dimension 3, this stabilization upgrades pl flips to directed quasiflips. It also gives for the first time a proof of the existence of log flips that is algebraic in nature, that is, via f.g. algebras, as opposed to geometric flips. It accounts for all the currently known flips and flops, except possibly for flips arising from geometric invariant theory.
Received in May 2002
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Citation: V. V. Shokurov, “Prelimiting Flips”, Birational geometry: Linear systems and finitely generated algebras, Collected papers, Trudy Mat. Inst. Steklova, 240, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 82–219; Proc. Steklov Inst. Math., 240 (2003), 75–213
Citation in format AMSBIB
\Bibitem{Sho03}
\by V.~V.~Shokurov
\paper Prelimiting Flips
\inbook Birational geometry: Linear systems and finitely generated algebras
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 240
\pages 82--219
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1993750}
\zmath{https://zbmath.org/?q=an:1082.14019}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 240
\pages 75--213
Linking options:
  • https://www.mathnet.ru/eng/tm384
  • https://www.mathnet.ru/eng/tm/v240/p82
  • This publication is cited in the following 63 articles:
    1. Izv. Math., 87:3 (2023), 616–640  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Botero A.M., Gil Jose Ignacio Burgos, “Toroidal B-Divisors and Monge-Ampere Measures”, Math. Z., 300:1 (2022), 579–637  crossref  mathscinet  isi
    3. Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Birkar C., “Generalised Pairs in Birational Geometry”, EMS Surv. Math. Sci., 8:1-2 (2021), 5–24  crossref  mathscinet  isi
    5. Dang N.-B., Favre Ch., “Spectral Interpretations of Dynamical Degrees and Applications”, Ann. Math., 194:1 (2021), 299–359  crossref  mathscinet  isi
    6. Shokurov V.V., “Skrepa Morphisms”, Pure Appl. Math. Q., 16:1, 3, SI (2020), 35–124  crossref  mathscinet  isi
    7. Garcia Barroso E.R., Gonzalez Perez P.D., Popescu-Pampu P., Ruggiero M., “Ultrametric Properties For Valuation Spaces of Normal Surface Singularities”, Trans. Am. Math. Soc., 372:12 (2019), 8423–8475  crossref  mathscinet  isi
    8. Holmes D., Pixton A., Schmitt J., “Multiplicativity of the Double Ramification Cycle”, Doc. Math., 24 (2019), 545–562  mathscinet  isi
    9. Cascini P., Tanaka H., “Purely Log Terminal Threefolds With Non-Normal Centres in Characteristic Two”, Am. J. Math., 141:4 (2019), 941–979  crossref  mathscinet  isi
    10. Oguiso K., “A Criterion For the Primitivity of a Birational Automorphism of a Calabi-Yau Manifold and An Application”, Math. Res. Lett., 25:1 (2018), 181–198  crossref  mathscinet  zmath  isi  scopus
    11. Patakfalvi Z., “Frobenius Techniques in Birational Geometry”, Algebraic Geometry: Salt Lake City 2015, Pt 1, Proceedings of Symposia in Pure Mathematics, 97, no. 1, eds. DeFernex T., Hassett B., Mustata M., Olsson M., Popa M., Thomas R., Amer Mathematical Soc, 2018, 489–517  crossref  mathscinet  isi
    12. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Fulger M., Lehmann B., “Zariski decompositions of numerical cycle classes”, J. Algebr. Geom., 26:1 (2017), 43–106  crossref  mathscinet  zmath  isi  scopus
    14. Birkar C., “Existence of flips and minimal models for 3-folds in char $p$”, Ann. Sci. Ec. Norm. Super., 49:1 (2016), 169–212  crossref  mathscinet  zmath  isi
    15. Birkar C., “Singularities on the base of a Fano type fibration”, J. Reine Angew. Math., 715 (2016), 125–142  crossref  mathscinet  zmath  isi  elib  scopus
    16. Choi S.R., Park J., “Potentially non-klt locus and its applications”, Math. Ann., 366:1-2 (2016), 141–166  crossref  mathscinet  zmath  isi  elib  scopus
    17. Odaka Yu., “Invariants of Varieties and Singularities Inspired By Kahler-Einstein Problems”, Proc. Jpn. Acad. Ser. A-Math. Sci., 91:4 (2015), 50–55  crossref  mathscinet  zmath  isi  scopus
    18. Kaveh K., Khovanskii A.G., “Note on the Grothendieck Group of Subspaces of Rational Functions and Shokurov'S Cartier B-Divisors”, Can. Math. Bul.-Bul. Can. Math., 57:3 (2014), 562–572  crossref  mathscinet  zmath  isi  scopus
    19. Ambro F., “An Injectivity Theorem”, Compos. Math., 150:6 (2014), 999–1023  crossref  mathscinet  zmath  isi  scopus
    20. Birkar C., Hu Zh., “Log Canonical Pairs With Good Augmented Base Loci”, Compos. Math., 150:4 (2014), 579–592  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:887
    Full-text PDF :547
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025