Abstract:
The authors study the problem of Kolmogorov widths of Sobolev classes Wrp([0,1])Wrp([0,1]) of functions in the LqLq-metric, p⩾q, and the connected questions of the existence and uniqueness of the spectra of nonlinear equations.
Citation:
A. P. Buslaev, V. M. Tikhomirov, “Spectra of nonlinear differential equations and widths of Sobolev classes”, Math. USSR-Sb., 71:2 (1992), 427–446
This publication is cited in the following 31 articles:
Lyonell Boulton, Jan Lang, “The eigenvalues and eigenfunctions of the non-linear equation associated to second order Sobolev embeddings”, Nonlinear Analysis, 236 (2023), 113362
Vasil'eva A.A., “Widths of Weighted Sobolev Classes With Constraints F(a) = Center Dot Center Dot Center Dot = F(K-1)(a) = F(K)(B) = Center Dot Center Dot Center Dot = F(R-1)(B)=0 and the Spectra of Nonlinear Differential Equations”, Russ. J. Math. Phys., 24:3 (2017), 376–398
X.L.i Wang, G.R.idi Wu, “On n-widths of a Sobolev function class in Orlicz spaces”, Acta. Math. Sin.-English Ser, 31:9 (2015), 1475
A.A. Vasil’eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, Journal of Approximation Theory, 167 (2013), 1
A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280 (2013), 91–119
A. A. Vasilyeva, “Kolmogorov widths and approximation numbers of Sobolev classes with singular weights”, St. Petersburg Math. J., 24:1 (2013), 1–27
Guo Feng, “Bernstein Widths of Some Classes of Functions Defined by a Self-Adjoint Operator”, Journal of Applied Mathematics, 2012 (2012), 1
Vasil'eva A.A., “Kolmogorov Widths of Weighted Sobolev Classes on a Domain for a Special Class of Weights. II”, Russian Journal of Mathematical Physics, 18:4 (2011), 465–504
Vasil'eva A.A., “Kolmogorov widths of weighted Sobolev classes on a domain for a special class of weights”, Russian Journal of Mathematical Physics, 18:3 (2011), 353–385
A. A. Vasil'eva, “Estimates for the widths of weighted Sobolev classes”, Sb. Math., 201:7 (2010), 947–984
Guo Feng, Gen Sun Fang, “Bernstein n-widths for classes of convolution functions with kernels satisfying certain oscillation properties”, Acta Math Sinica, 25:3 (2009), 393
Feng Guo, “Exact Values of Bernstein n-Widths for Some Classes of Periodic Functions with Formal Self-Adjoint Linear Differential Operators”, J Inequal Appl, 2008 (2008), 1
Yuri V. Egorov, Differential Operators and Related Topics, 2000, 101
Jiang Y., Liu Y., “Average B-Width and Infinite-Dimensional G-Width of Some Smooth Function Classes on the Line”, Chin. Sci. Bull., 43:10 (1998), 810–812
R. Kh. Sadikova, “Inequalities for sourcewise representable functions and their applications”, Math. Notes, 62:4 (1997), 469–479
Yuri V. Egorov, “On a Kondratiev problem1”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324:5 (1997), 503
Babenko V., Kofanov V., Pichugov S., “On Exact Inequalities of Landau-Hadamard-Kolmogorov Type for Multivariate Functions”, Dokl. Akad. Nauk, 356:1 (1997), 7–9
Tikhomirov V., “On Extremal Subspaces of Functional Classes Defined by Cyclic Variation Diminishing Kernels”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1997, no. 4, 16–19
A. P. Buslaev, G. G. Magaril-Il'yaev, Nguyen Thien Nam, “Exact values of Bernstein widths of Sobolev classes of periodic functions”, Math. Notes, 58:1 (1995), 770–774
V. M. Tikhomirov, “Harmonics and splines as optimal tools for approximation and recovery”, Russian Math. Surveys, 50:2 (1995), 355–402