Citation:
A. A. Vasilyeva, “Kolmogorov widths and approximation numbers of Sobolev classes with singular weights”, Algebra i Analiz, 24:1 (2012), 3–39; St. Petersburg Math. J., 24:1 (2013), 1–27
\Bibitem{Vas12}
\by A.~A.~Vasilyeva
\paper Kolmogorov widths and approximation numbers of Sobolev classes with singular weights
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 1
\pages 3--39
\mathnet{http://mi.mathnet.ru/aa1267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013292}
\zmath{https://zbmath.org/?q=an:06208255}
\elib{https://elibrary.ru/item.asp?id=20730141}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 1
\pages 1--27
\crossref{https://doi.org/10.1090/S1061-0022-2012-01229-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326331900001}
\elib{https://elibrary.ru/item.asp?id=20416342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871498575}
Linking options:
https://www.mathnet.ru/eng/aa1267
https://www.mathnet.ru/eng/aa/v24/i1/p3
This publication is cited in the following 6 articles:
E. N. Lomakina, M. G. Nasyrova, “Estimate for the entropy numbers of the weighted Hardy operators that act from Banach space to q-Banach space”, Siberian Math. J., 60:4 (2019), 624–635
A. A. Vasil'eva, “Widths of weighted Sobolev classes with constraints f(a)=⋯=f(k−1)(a)=f(k)(b)=⋯=f(r−1)(b)=0 and the spectra of nonlinear differential equations”, Russ. J. Math. Phys., 24:3 (2017), 376–398
A. A. Vasil'eva, “Embedding theorems for a weighted Sobolev class in the space Lq,v with weights having a singularity at a point: case v∉L1q”, Russ. J. Math. Phys., 23:3 (2016), 392–424
A. A. Vasil'eva, “Embeddings and widths of weighted Sobolev classes”, Eurasian Math. J., 6:3 (2015), 93–100
A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain: strong singularity at a point”, Rev. Mat. Complut., 27:1 (2014), 167–212
A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41