\Bibitem{Tik95}
\by V.~M.~Tikhomirov
\paper Harmonics and splines as optimal tools for approximation and recovery
\jour Russian Math. Surveys
\yr 1995
\vol 50
\issue 2
\pages 355--402
\mathnet{http://mi.mathnet.ru/eng/rm1063}
\crossref{https://doi.org/10.1070/RM1995v050n02ABEH002069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1339267}
\zmath{https://zbmath.org/?q=an:0896.41013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995RuMaS..50..355T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TP57000007}
Linking options:
https://www.mathnet.ru/eng/rm1063
https://doi.org/10.1070/RM1995v050n02ABEH002069
https://www.mathnet.ru/eng/rm/v50/i2/p125
This publication is cited in the following 8 articles:
Chunshan Liu, Y. V. Zakharov, Teyan Chen, “Doubly Selective Underwater Acoustic Channel Model for a Moving Transmitter/Receiver”, IEEE Trans. Veh. Technol., 61:3 (2012), 938
Bazarkhanov D.B., “Estimates for certain approximation characteristics of Nikol'skii–Besov spaces with generalized mixed smoothness”, Dokl. Math., 79:3 (2009), 305–308
S. S. Platonov, “Analog of the Whittaker–Kotelnikov–Shannon Theorem from the Point of View of Fourier–Bessel Analysis”, Math. Notes, 83:2 (2008), 238–245
S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938
S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048
A. V. Pokrovskii, “The best asymmetric approximation in spaces of continuous functions”, Izv. Math., 70:4 (2006), 809–839
Yu. A. Farkov, “Orthogonal Wavelets on Locally Compact Abelian Groups”, Funct. Anal. Appl., 31:4 (1997), 294–296
V. M. Buchstaber, V. Z. Ènol'skii, “Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein σ-Functions”, Funct. Anal. Appl., 30:1 (1996), 44–47