Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1995, Volume 50, Issue 2, Pages 355–402
DOI: https://doi.org/10.1070/RM1995v050n02ABEH002069
(Mi rm1063)
 

This article is cited in 8 scientific papers (total in 8 papers)

Harmonics and splines as optimal tools for approximation and recovery

V. M. Tikhomirov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Received: 25.02.1995
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: V. M. Tikhomirov, “Harmonics and splines as optimal tools for approximation and recovery”, Russian Math. Surveys, 50:2 (1995), 355–402
Citation in format AMSBIB
\Bibitem{Tik95}
\by V.~M.~Tikhomirov
\paper Harmonics and splines as optimal tools for approximation and recovery
\jour Russian Math. Surveys
\yr 1995
\vol 50
\issue 2
\pages 355--402
\mathnet{http://mi.mathnet.ru/eng/rm1063}
\crossref{https://doi.org/10.1070/RM1995v050n02ABEH002069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1339267}
\zmath{https://zbmath.org/?q=an:0896.41013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995RuMaS..50..355T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TP57000007}
Linking options:
  • https://www.mathnet.ru/eng/rm1063
  • https://doi.org/10.1070/RM1995v050n02ABEH002069
  • https://www.mathnet.ru/eng/rm/v50/i2/p125
  • This publication is cited in the following 8 articles:
    1. Chunshan Liu, Y. V. Zakharov, Teyan Chen, “Doubly Selective Underwater Acoustic Channel Model for a Moving Transmitter/Receiver”, IEEE Trans. Veh. Technol., 61:3 (2012), 938  crossref
    2. Bazarkhanov D.B., “Estimates for certain approximation characteristics of Nikol'skii–Besov spaces with generalized mixed smoothness”, Dokl. Math., 79:3 (2009), 305–308  mathnet  crossref  mathscinet  zmath  isi  elib
    3. S. S. Platonov, “Analog of the Whittaker–Kotelnikov–Shannon Theorem from the Point of View of Fourier–Bessel Analysis”, Math. Notes, 83:2 (2008), 238–245  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. A. V. Pokrovskii, “The best asymmetric approximation in spaces of continuous functions”, Izv. Math., 70:4 (2006), 809–839  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Yu. A. Farkov, “Orthogonal Wavelets on Locally Compact Abelian Groups”, Funct. Anal. Appl., 31:4 (1997), 294–296  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. V. M. Buchstaber, V. Z. Ènol'skii, “Explicit Algebraic Description of Hyperelliptic Jacobians on the Basis of the Klein σ-Functions”, Funct. Anal. Appl., 30:1 (1996), 44–47  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:699
    Russian version PDF:317
    English version PDF:68
    References:94
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025